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Abstract
Multicore machines with Non-Uniform Memory Accesses
(NUMA) are becoming commonplace. It is thus becoming
crucial to understand how the resources they provide can be
efficiently exploited. Most current research works are tack-
ling the problem at the Operating System (OS) level. They
focus on improving existing OS primitives, or on propos-
ing novel OS designs with the aim of reducing OS bottle-
necks and improving the scalability of applications running
on such machines.

In this paper, we adopt a complementary perspective: we
examine how to optimize the scalability of a parallel ap-
plication running on top of an unmodified, currently avail-
able operating system. The chosen application is the popu-
lar Apache-PHP stack. We highlight three performance is-
sues at different levels of the system due to: (i) excessive
remote memory accesses, (ii) inefficient load dispatching
among cores, and (iii) contention on kernel data structures.
We propose and implement solutions at the application-level
for each issue. Our optimized Apache-PHP software stack
achieves a 33% higher throughput than the base configura-
tion on a 16-core setup. We conclude the paper with lessons
learned on optimizing server applications for multicore com-
puters.

1. Introduction
Multicore machines with Non-Uniform Memory Accesses
(NUMA) are becoming commodity platforms and efficiently
exploiting their resources remains an open research prob-
lem. As a central concern over the last years, this ques-
tion has mainly been tackled at the Operating System (OS)
level. Novel runtime [Saha 2007, Zeldovich 2003, Zhuravlev
2010] and kernel [Baumann 2009, Boyd-Wickizer 2008] de-
signs are being proposed and refined for this specific issue,
and recent works on the adaptation of traditional kernel ar-

chitectures also shows encouraging signs [Boyd-Wickizer
2010].

This paper adopts a complementary perspective. Namely,
we examine what can be done at the level of a parallel ap-
plication in order to optimize its scalability on top of a cur-
rently available operating system. The approach is motivated
by several reasons. First, it can provide application users
with means to overcome OS scaling problems, while wait-
ing for their long-term fixes. Second, it is not clear yet that
all OS scalability issues can be ultimately addressed with-
out requiring hints and efforts from application program-
mers. In any case, a thorough understanding of application
scalability heuristics is a prerequisite for the development
of improved OS mechanisms and policies. Last, even if OS
designs successfully overcome the overheads of multicore
hardware management, many performance issues will re-
main within applications. Therefore, it is very important to
provide developers with simple ways to identify bottlenecks
in application-level code.

As a concrete example, we focus on a Web server appli-
cation. An efficient exploitation of multicore hardware is of
utmost importance in this context. Indeed, absorbing more
client requests per machine should allow reducing the num-
ber of nodes in a datacenter, thus minimizing infrastructure,
administration and energy-related costs. More precisely,
we study the performance of the Apache-PHP [Apache,
PHP] software stack, on a 16-core (4-die) NUMA machine
with the realistic SPECweb2005 [SPEC a] benchmark. We
choose these software components because they are widely
deployed1, feature-rich (and thus complex) and known for
their good performance results. One could expect this stack
to scale nicely, given its inherent parallelism and the read-
only profile of the workload. However, we notice a 26% per-
formance drop when increasing the number of dies from 1

1 According to a recent survey, Apache accounts for 57% of the Web servers
on the Internet [Netcraft 2010].



to 4. We identify several causes of inefficiencies and we pro-
vide a set of optimizations to address them. Our solutions
encompass several dimensions: deployment configuration,
load balancing strategy and circumvention of kernel bottle-
necks. As a result, we achieve a 33% performance increase
over the initial configuration of the server, only 5% short
from the ideal scalability with respect to the 1-die setup.

This paper makes the following contributions: (i) it pro-
vides insights on the scalability bottlenecks of a popular soft-
ware stack on recent NUMA multicore hardware with a re-
alistic workload, (ii) it describes application-level strategies
to overcome these performance limitations, (iii) it describes
the methodology that allowed us to pinpoint these non-trivial
issues and derives several lessons from our experience.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 provides background in-
formation on the hardware and software context. Section 4
describes our testbed. In Sections 5, 6, 7, we describe the
analysis of three performance issues, as well as their solu-
tions. Section 8 summarizes our key methodological lessons.
Finally, Section 9 concludes the paper.

2. Related work
Several research projects have focused on making operat-
ing systems more scalable on multicore architectures. The
central idea consists in minimizing contention on software
and hardware resources by avoiding unnecessary sharing be-
tween cores. New kernels have been proposed with respect to
this concern. K42 [Krieger 2006] features internal data struc-
tures optimized for scalability. Corey [Boyd-Wickizer 2008]
provides application programmers with flexible constructs
to express sharing requirements and placement of kernel
services. The multikernel model [Baumann 2009], imple-
mented by the Barrelfish OS, pushes this approach further,
advocating to design a multicore kernel like a distributed
system. Over the last decade, many scalability improvements
have also been introduced into more traditional kernels like
Linux (e.g. [Bryant 2004, Kleen 2009]). In a very recent
analysis [Boyd-Wickizer 2010], researchers from MIT study
the scalability of Linux on a manycore platform using a set
of representative system applications. They identify and fix
a set of bottlenecks, and conclude that, on the current gener-
ation of hardware, traditional OS architectures do not exhibit
major obstacles to scalability.

Some papers have provided general advice for scaling
systems software (e.g. [Cantrill 2008, McDougall 2005]).
They discuss a set of guidelines such as the careful choice
and usage of synchronization primitives, basic hints to un-
derstand scaling issues, architectural patterns to avoid re-
source contention (e.g., deploying many small-scale, in-
dependent instances of a given application) and optimized
memory allocators. Our work leverages some of this knowl-
edge and focuses on a concrete case study, with advanced
details on profiling and some specific bottlenecks.

A substantial body of work has strived to study and im-
prove the performance of network servers (e.g. [Nahum
2002, Pariag 2007]) but only a small fraction of them has
considered multicore setups (e.g. [Jinmei 2006]). A few
papers have brought contributions to the specific domain
of multicore Web servers. Choi et al. [Choi 2005] compare
the performance of several server designs on parallel hard-
ware. Their study considers several real-world traces but is
only performed on a simulator using a simple hardware and
application model. Besides, they focus on workloads with
static content and large ratios of disk I/Os. In contrast, we
consider a real platform with an in-memory data set and we
take dynamic content generation into account. Our work has
strong connections with the study by Veal and Foong [Veal
2007], which considers the scalability of the Linux-Apache-
PHP stack on an 8-core Intel architecture with a centralized
memory controller. They conclude that their address bus
is the primary obstacle to performance scaling and masks
software bottlenecks. However, our hardware setup is sig-
nificantly different, with twice as many cores, a NUMA de-
sign and a substantially increased network capacity. These
changes have a huge impact on the behavior of the system.
Thus, our profiling methodology considers more parameters
and most of our observations are different. Moreover, we
propose solutions to address the discovered bottlenecks.

Finally, note that the authors of Corey and Barrelfish have
used simple, home-made Web servers among their test ap-
plications. Besides, Apache is one of the applications that
is benchmarked in [Boyd-Wickizer 2010] and was also used
in a case study of DProf [Pesterev 2010]. In all four cases,
the Web server was benchmarked with a simple workload,
as the goal of the experiment was mostly to stress the kernel
I/O subsystems. Our study provides another perspective, fo-
cusing on the combined impact of (i) the interactions with a
complex component such as PHP, and (ii) a different, more
realistic workload.

3. Background
In this section, we present the hardware architecture on
which we performed our study. We then describe the ar-
chitecture of the Apache Web server and precisely explain
the mapping of request flow processing on the benchmarked
hardware.

3.1 Hardware architecture
The measurements were performed on a Dell PowerEdge
R905 machine. The overall architecture of the system is
summarized in Figure 12. This machine has four AMD
Opteron 8380 processors with four cores in each, leading
to a total of sixteen cores (in the remainder of this paper,
we use the terms processor and die interchangeably). Each
core is clocked at 2.5 GHz, has private L1 and L2 caches

2 Note that, for the sake of readability, MCT, crossbar and caches are only
represented on one die, but are present in all dies.
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Figure 1. Internal architecture of the benchmarked server.

(of 64 and 512 KB, respectively) and shares a 6 MB L3
cache with the three other cores of the same die. The ma-
chine has 32 GB of DDR2 RAM at 667 MHz, organized
in four NUMA memory nodes (one node per socket, 8 GB
per node). Using a microbenchmark, we measured a peak
throughput of 61 Gb/s between a memory controller and a
local memory bank. Dies communicate (for I/O, memory
and cache coherence requests) using HyperTransport (HT)
1.0 links, with a measured peak throughput of 24 Gb/s. The
messages are routed statically across sockets (e.g., messages
sent from die 0 to die 3 always transit through die 1) through
the processors crossbars. Memory accesses are performed
by the memory controller (MCT). The memory controller is
also responsible for the cache coherence protocol. Finally,
the machine has 20 Gigabit Ethernet ports (Intel Pro/1000
PT cards). NICs are connected to either die 0 or die 3.

Our architecture is not fully symmetric in terms of mem-
ory connections. Dies 0 and 3 are closer to I/O devices but
have a less efficient connectivity to some memory banks.
More precisely, two dies (1 and 2) have access to all mem-
ory banks with a maximum of 1 hop (fast dies) and the other
two (0 and 3) with a maximum of two hops (slow dies). This
comes from the fact that there is an HT link connecting dies
1 and 2, but there is no HT link connecting dies 0 and 3.

3.2 Apache/PHP architecture
Apache can use three different execution modes: Worker,
Prefork and Event. In our experiments, we use Apache in
its most deployed mode: Worker. This design uses a com-
bination of processes and threads. All processes behave in
the same way, except for the first spawned process (called
master). Each process dedicates one thread to accept new
connections and maintains a pool of worker threads to pro-
cess incoming requests. The master process is responsible
for the creation and destruction of other processes according
to the current load of the server. More precisely, when the
number of idle threads is below a configurable threshold (25
in our configuration), the master forks. The child process in-

herits the main process’ sockets and starts accepting new in-
coming connections, concurrently with previously spawned
processes. The child process keeps the master updated on
its number of idle worker threads via a shared data structure
(scoreboard) in memory. When the server has too many idle
threads (250 in our configuration), the master sends a mes-
sage in a pipe that is shared between processes. The process
that first receives the message finishes processing its ongo-
ing requests and exits gracefully.

Worker threads handle static and dynamic requests in dif-
ferent ways. Static requests are handled using the sendfile
system call. sendfile transmits files directly over the net-
work from the buffer cache in a zero-copy manner. Dynamic
requests are handled by a fixed number of PHP processes3

spawned at the creation of the server. PHP processes inter-
act with Apache using the FastCGI protocol. More precisely,
all PHP processes concurrently wait for incoming FastCGI
requests on the same Unix socket. Each FastCGI request is
received by exactly one PHP process that handles the request
and sends the resulting page to Apache.

The performance of the above-described request process-
ing flows for static and dynamic content are impacted by the
underlying hardware architecture. The main points of inter-
action between these two levels are depicted in Figures 2.a
and 2.b for static and dynamic requests, respectively. Note
that Figure 2 assumes that all the files are present in memory
(which is the case in the benchmarked configuration), there-
fore no disk I/O is represented. For both static and dynamic
requests, the incoming TCP packet may travel across one or
more HT links from a NIC to a kernel buffer (step 1). Once
processed by the kernel, the HTTP packet is handled by an
Apache process running on a possibly different die (step 2).
Dynamic requests need an extra step to interact with a PHP
process which may be located on a remote die (step 2’). This
step induces data copies in the Unix socket. Steps 3 and 4
correspond to the sendfile or write system calls for static
and dynamic requests, respectively4. In both cases, a DMA
read request is initiated (step 3), which is then performed by
the NIC (step 4). Static files sent via the sendfile system
call may be located on any memory bank. Consequently, the
memory accesses performed by the NIC may target a die
different from the one that initiated the transfer in step 3.
In contrast, on our NUMA kernel, buffers allocated by the
write system call for dynamic requests are always local to
the Apache process which initialized the transfer in step 3.
This is why we observe on Figure 2.b that step 4 involves die
0, which is the die that initiated the transfer in step 3.

3 We observed that the PHP process manager decreases the performance of
the Web server. We do thus use a static configuration for PHP.
4 For simplicity, we omit to describe the emission of the HTTP reply header
which consists in a write system call. The steps needed to perform this
operation are similar to steps 3 and 4 of dynamic requests.
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Figure 2. Steps needed to process (a) static requests and (b) dynamic requests.

4. Testbed and performance baseline
In this section, we present the SPECweb2005 workload.
We then present our experimental testbed and explain how
we tuned the Linux-Apache-PHP stack to achieve the best
possible performance. Finally, we evaluate the scalability of
this setup on SPECweb2005 and conclude that the Linux-
Apache-PHP stack is 26% less efficient in the 4-die setup
than in the 1-die setup.

4.1 Workload
Our performance evaluation is based on the well-established
SPECweb2005 benchmark, which provides a closed-loop
client injection module, as well as server-side scripts and
data files modeling a realistic Web workload. SPECweb2005
includes three workloads: Support, E-commerce and Bank-
ing. We choose to focus on the Support workload for sev-
eral reasons. First, it spends more time than the other work-
loads in the Web server (in contrast to other workloads that
spend time, e.g., in cryptographic libraries). It is therefore
more likely to expose bottlenecks in the Web server. More-
over, this workload induces less CPU-intensive processing
in the Web server. Consequently, it may be harder for the
Web server to fully leverage hardware parallelism under this
load. Finally, this workload stresses several OS functions, as
it generates the most intensive networking load.

For practical reasons, we slightly modify the default set-
tings5: the dirscaling option is set to 0.0625, leading to a
total data set of 12 GB. Consequently, all the files fit in the
buffer cache, which allows avoiding disk I/Os. This choice
is in line with current trends in data center design [Ouster-
hout 2010]. This modification was also employed by Veal
and Foong in their study [Veal 2007].

We use the performance metric defined by
SPECweb2005. This metric considers the number of

5 As a consequence, our results cannot be compared to vendor published,
formally accepted SPEC results.

clients that can be handled per second, while ensuring
a minimum quality of service (QoS) level. This level is
defined as follows: 95% of the requested pages must be sent
back to the client in a good time (below 3 seconds), 99%
in a tolerable time (below 5 seconds), and less than 0.5%
of the requests can fail (e.g. raise errors like “connection
refused”). In addition, the average download bitrate for
static files must be greater than 99 KB/s and 95 KB/s for
good and tolerable requests, respectively.

For each benchmarked configuration, we use a binary
search in order to determine the maximum number of clients
that can be handled by the server, while still ensuring the
minimum QoS level. The minimal step used in the binary
search is 25 clients per core (i.e. 100 clients per die). Finally,
note that each SPECweb2005 result reported in this paper
is the average of 5 runs and that the observed deviation
between them was always smaller than 0.5%.

4.2 Testbed
We run the Apache Web server on the Dell PowerEdge R905
machine described in Section 3. Note that for setups using
less than 16 cores, we disable unused cores. We perform
load injection using a set of 22 dual core machines equipped
with 2 GB of main memory and a 1 Gb/s network card.
These machines are interconnected with a non blocking, 48-
port Gigabit Ethernet switch. Each machine is executing two
instances of the SPECweb2005 module, which allows run-
ning up to 2000 SPECweb2005 clients per machine. Each
machine can send HTTP requests to all the network inter-
faces of the server. Interfaces are actually chosen in a round-
robin manner. SPECweb2005 uses a pseudo backend server
(BeSim) to simulate the database tier. Like [Veal 2007], we
deploy one BeSim instance on each client machine. For each
experiment, we systematically check that the BeSim tier is
not a bottleneck.



4.3 Linux configuration
We use the Linux kernel version 2.6.34 with NUMA support
and Glibc version 2.7. We carefully tune networking param-
eters to ensure that the network is never the bottleneck in
our experiments. More precisely, we configure IRQs so that
each die handles 5 network cards and we carefully configure
various TCP parameters as described in [Veal 2007]. Finally,
we increase the maximum pid value (kernel.pid_max) in
order to ensure that Apache can create enough threads to
handle all requests.

4.4 Apache/PHP configuration
We use Apache 2.2.14 and PHP 5.2.12. As previously men-
tioned, all the benchmark files are preloaded in main mem-
ory. To avoid overloading some dies, we equally balance files
among the four available memory banks. We also disable the
access log in order to avoid disk I/Os6.

We carefully tune Apache and PHP to make sure that
the server achieves the best possible performance. Table 1
presents the performance impact of the main configura-
tion parameters defined in Apache/PHP. The first line cor-
responds to our best configuration. Other lines correspond
to Apache configurations in which all but one parameters
are similar to the best configuration. The modified parame-
ter is indicated in the first column. The benchmark is per-
formed using 6600 SPECweb2005 clients per die, which is
the maximum number of clients that can be handled by our
best configuration.

Apache allows configuring the maximum number of con-
nections that can be concurrently served. Our best configu-
ration does not set such a limit. Indeed, we observe a per-
formance degradation when doing so (see Table 1, Line 2).
This is not surprising as this induces an increase in the la-
tency perceived by some clients, and does thus decrease the
number of clients that are served in a good or tolerable time7.

Apache also allows configuring the number of threads
per process. We set this number to 64, which is the highest
possible value. Decreasing this value degrades performance
(see Table 1, Line 3). We explain this degradation by the fact
that decreasing the number of threads per process induces an
increase in the number of Apache processes, which in turn
induces a higher number of address space switches.

Moreover, we configure Apache to use the sendfile
system call. This system call prevents costly buffer copies
between the user and kernel spaces. We observe (see Table 1,
Line 4) that disabling the usage of sendfile drastically
decreases the performance of Apache: the percentage of
good requests drops to 27.9%.

6 Note that in a recent benchmark [SPEC b], authors are getting around I/O
limitations by using a very large number of disks (55 disks in RAID0, 7 of
which dedicated to logging). We did not have a similar hardware setup at
our disposal, hence our choice to load all files in memory.
7 Note that in a production environment, the maximum number of clients
that can be concurrently served is typically configured using the results of
benchmarks such as SPECweb2005.

Regarding PHP, we set the number of PHP processes to
500 in all our experiments. Indeed, we observe that decreas-
ing or increasing this value had a negative impact on the per-
formance (see Table 1, Lines 5 and 6). Finally, we config-
ure the server to use eAccelerator, a byte-code cache that
allows compiling PHP scripts only once. Disabling eAccel-
erator heavily hurts performance (see Table 1, Line 7).

Configuration Good Tolerable
(%) (%)

1 Best 97.5 99.9
2 Max concurrent connections =

0.9x(Max SPECweb connections) 93.6 95
3 Nb of threads per process = 32 94.1 99.8
4 Sendfile disabled 27.9 94.8
5 Nb of PHP processes = 150 91.3 97.6
6 Nb of PHP processes = 750 94.3 98.1
7 eAccelerator disabled 11.2 11.3

Table 1. SPECweb results at 4 dies with 6600 clients per
die. To be valid, a run must have more than 95% of its
requests served in good time and 99% in tolerable time.

4.5 Performance baseline
We evaluate the performance of the Linux-Apache-PHP
software stack configured using the parameters described
in the previous sections. This configuration is called stock
Apache in the remainder of the paper. As scalability unit, we
choose to consider the die rather than the core. The reason is
that, as noted in [Boyd-Wickizer 2010], using a single-core
configuration as the baseline might be misleading regarding
the scalability potential of the system. Indeed, cores located
on the same die compete for shared cache space, which pre-
vents the system from achieving a perfect scalability (for in-
stance, we observe on the SPECweb2005 workload that the
L3 miss ratio grows from 8% to 14% when increasing the
number of cores from 1 to 4).

The performance results for the stock Apache configura-
tion are presented in the first line of Table 2. Note that since
dies are not symmetrical, when less than 4 dies are used in
experiments, we present averaged results of runs executed
on the various die combinations. For instance, the perfor-
mance reported for the stock Apache configuration on 1 die
(8900 clients) is the average of the performance achieved
when Apache runs on a slow die (8600 clients) and of the
performance achieved when Apache runs on a fast die (9200
clients). Table 2 shows that with 4 dies, the number of clients
per die that can be processed (6600 clients) is 26% lower
than the number of clients that can be served when only one
die is used (8900 clients).

In the following three sections, we pinpoint three perfor-
mance problems and provide solutions for them. We first
consider a decrease in the efficiency of memory accesses
and mitigate it by co-localizing cooperative processes and
guiding decisions of the scheduler (Section 5). Next, we ad-



1 die 2 dies 4 dies
Configuration Nb clients Gain/Stock (%) Nb clients Gain/Stock (%) Nb clients Gain/Stock (%)

1 Stock Apache 8900 N/A 7900 N/A 6600 N/A
2 Apache with optim. 1 8900 0 7700 -2.5 7200 9.1
3 Apache with optim. 1+2 8900 0 8100 2.5 8000 21.2
4 Apache with optim. 1+2+3 9300 4.5 8800 11.4 8800 33.3

Table 2. All Apache configurations: SPECweb2005 results and improvement of the various optimizations over the stock
Apache configuration at 1, 2, and 4 dies.

dress load balancing issues by taking the hardware asymme-
try into account (Section 6). Finally, we identify and circum-
vent contention issues in the OS layer (Section 7).

5. First optimization: reducing remote
memory accesses

In this section, we present our first optimization to improve
the performance of Apache on NUMA multicore platforms.
We explain how we diagnosed a first source of inefficiency:
a large number of remote memory accesses. We then intro-
duce a solution to the problem: modifying the application ar-
chitecture so that Apache processes only interact with PHP
processes and network processing stacks located on the same
die. Finally, we show that this first optimization yields a 9%
performance improvement in the 4-die setup.

5.1 Problem diagnosis
The scalability issue observed in the previous section does
not come from an injection problem: the server CPUs are
fully loaded, network links are not saturated and injectors
are not overloaded. The first metric we use to understand
the performance drop observed at 4 dies is the number of
instructions issued per core cycle (IPC). The IPC metric
is related to the performance of memory accesses. Indeed,
cores might get stalled when waiting for data, thus reducing
the number of instructions that can be issued per cycle. We
measure the IPC under the maximum SPECweb2005 client
load that can be handled while guaranteeing the minimum
QoS level defined by the benchmark.

We report the average IPC on all active cores in Table 3.
This table shows that the average IPC is significantly lower
(-21%) at 4 dies than at 1 die. Note that, similarly to what we
do for SPECweb2005 results, when less than 4 dies are used
in experiments, we present averaged results of runs executed
on the various combinations of dies.

Configuration Average IPC
1 die 0.38
4 dies 0.30

Table 3. Stock Apache: average IPC.

The observed IPC drop is due to an increase in memory
access latencies. This phenomenon has three main possible
causes: (i) a decreased efficiency of the processor caches (i.e.

a poorer cache hit ratio) due to true or false sharing between
dies, (ii) a higher number of remote memory accesses per
transmitted byte (i.e. accesses performed by a core to a
memory bank located on another die), and (iii) a higher
pressure on the HT links and/or on local memory buses. We
now study each of the above-described causes in turn.

Cache efficiency. We measure the number of L1, L2, and
L3 cache misses per transmitted byte as well as their miss
ratio8. We do not observe any reduction in cache efficiency:
the numbers of L1, L2, and L3 cache misses per byte remain
constant between 1 and 4 dies. Moreover, the L1, L2 and L3
cache miss ratios remain stable at 2%, 19% and 14%. Con-
sequently, the IPC drop cannot be attributed to a decrease in
cache efficiency.

Remote memory accesses. We measure the percentage of
remote accesses and the number of remote accesses per
transmitted kilobyte9. Results are presented in Table 4. We
observe that the number of remote accesses per kilobyte
drastically increases (+250%). This means that every sin-
gle request induces a very large number of remote memory
accesses with respect to the single-die configuration. More-
over, the number of remote memory accesses exceeds the
number of local accesses when using 4 dies (67% of the ac-
cesses are remote). We conclude that the increase of remote
memory accesses is a possible cause of the IPC drop ob-
served in the 4-die setup.

Configuration Remote Remote Max HT
accesses (%) accesses/kB usage (%)

1 die 21 4 25
4 dies 67 14 75

Table 4. Stock Apache: ratio of remote memory accesses,
number of remote memory accesses per transmitted kB, and
maximum HT link usage.

Utilization of HT links and memory buses. We monitor
the HyperTransport (HT) link utilization. During a bench-
mark run, we measure the usage of all HT links and report

8 The profiled hardware events are, for example, “L3 cache misses” and
“Read Request to L3 Cache”.
9 The profiled hardware event is “CPU to DRAM Requests to Target
Node”.



the value of the link that exhibits the highest average us-
age10. Maximum HT link usages are reported in Table 4.
We observe that no bus is saturated, but that HT link usage
drastically increases (+200%), growing from 25% at 1 die to
75% at 4 dies. This could explain the IPC drop observed in
the 4-die setup.

To better understand the origin of the HT link traffic, we
measure the percentage of this traffic that is caused by NICs’
DMA transfers11. This profiling reveals that at most 27% of
the HT traffic is due to DMA transfers. The major share of
this traffic can thus be attributed to the memory accesses
(and the corresponding cache coherence traffic) performed
by the cores.

Unfortunately, we cannot present numbers for the usage
of local memory buses (i.e. buses connecting the MCT to
the DRAM). The reason is that our machine does not pro-
vide hardware events to determine this metric. However, we
believe that these buses are not a main cause of the IPC drop
observed in the 4-die setup. Indeed, these buses have a much
higher capacity (2.5x) than the HT links and the majority
of memory transfers also transits through HT links (67% of
memory accesses are remote memory accesses).

5.2 Solution
In section 5.1, we identified two correlated reasons for the
IPC drop observed in the 4-die setup: a drastic increase of
both remote memory accesses and maximum HT link uti-
lization. Remote accesses have three main origins. First, they
result from shared memory interactions between Apache
processes (e.g. Apache scoreboard written by all threads).
Second, they stem from communications between the differ-
ent components of the Web server (detailed in Section 3 and
represented in Figure 2). Third, they arise from interactions
between the application and the kernel services (especially
the networking stack).

A first way to limit the number of remote accesses and the
pressure on HT links is to force an Apache thread to only co-
operate with a PHP instance running on the same die. Unfor-
tunately, this approach only addresses one of the three prob-
lem causes: it ensures that communications between the dif-
ferent components of the Web server will be local. Moreover,
note that these communications only account for 35.6% of
all remote accesses. Therefore, we choose another solution.
This solution consists in deploying one Apache instance per
die, rather than a single instance for the whole server. For
each Apache instance, the child processes, threads and their
associated PHP processes are pinned on the same die. This
can be achieved using Linux taskset without modifying
the Apache Web server. Each Apache instance handles a

10 The profiled hardware events are “HyperTransport Link X
Transmit Bandwidth”, where X ranges between 0 and 2 since each die
has exactly 3 HT links (see Figure 1). The HT link usage is computed as
explained in [AMD 2010].
11 The profiled hardware events are “CPU to DRAM Requests to
Target Node” and “IO to DRAM Requests to Target Node”.
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Figure 3. Steps needed to process a dynamic request with
our first optimization.

fixed set of NICs, in order to co-localize the processing per-
formed by both the network processing stack and the appli-
cation.

Figure 3 illustrates the processing of a dynamic request
with the above-described configuration. It shows that steps 2
and 2’ are now localized on the same die. In this way, most
remote memory interactions are avoided. The only remain-
ing remote data accesses are the communications with I/O
links and DMA transfers (steps 1, 3 and 4).

5.3 Evaluation
We evaluate the gain brought by the optimization described
in the previous section. Results are reported in Table 2 (sec-
ond line). The optimization yields a 9% performance im-
provement for the server with 4 dies compared to stock
Apache. As expected, this optimization has no visible ef-
fect when only 1 die is used. More surprisingly, we observe
a slight performance decrease (-2.5%) for the 2-die configu-
ration compared to stock Apache. This behavior is explained
in Section 6.

We check the impact of the optimization on the metrics
studied in Section 5.1. We first assess the average IPC. Re-
sults are reported in Table 5. As expected, we observe that
the IPC of the 1-die setup is not modified. In the 4-die setup,
we observe an increase (+19%) with respect to the stock
Apache configuration. The average IPC in the 4-die setup
is now only 5% lower than in the 1-die setup.

Configuration Average IPC
1 die 0.38
4 dies 0.36

Table 5. Apache with the first optimization: average IPC.

We also assess the number of remote memory accesses
per transmitted kilobyte to SPECweb2005 clients and the
maximum HT link usage. Results are reported in Table 6. As
expected, we observe that the proposed optimization drasti-
cally reduces the number of remote memory accesses per
transmitted kilobyte (-64%) and that most memory accesses
are now local (73% compared to 33% on the stock Apache



setup). Regarding the maximum HT link usage, the improve-
ment is much smaller (-13%). The reason is that the HT link
traffic does not only stem from remote software memory ac-
cesses. It also stems from DMA transfers and the cache co-
herence protocol that are not influenced by the optimization.

Configuration Remote Remote Max HT
accesses (%) accesses/kB usage (%)

1 die 21 4 25
4 dies 27 5 65

Table 6. Apache with the first optimization: ratio of re-
mote memory accesses, number of remote memory accesses
per transmitted kB, and maximum HT link usage.

6. Second optimization: adequately
dispatching load on dies

In this section, we present our second optimization to im-
prove the performance of Apache. This section starts by di-
agnosing a problem: load is not adequately dispatched on
dies, which causes fast dies to be idle 15% of the time. We
then propose to solve this problem using an external load
balancer responsible for properly dispatching incoming re-
quests on the dies. Finally, we show that Apache running
with the first two optimizations is 21.2% more efficient than
the stock Apache configuration in the 4-die setup.

6.1 Problem diagnosis
Results reported in Table 2 show that Apache running with
the first optimization is 19% less efficient at 4 dies than at
1 die. As done in Section 5, we first check that CPUs are
fully loaded, network links are not saturated and injectors are
not overloaded. We actually observe that CPUs are not fully
loaded. More precisely, dies 0 and 3 are fully used (CPU
usage is at 100% during the whole benchmark duration), but
dies 1 and 2 are idle 15 % of the time. In contrast, remember
that we observed in Section 5.1 that with the stock Apache
configuration, all CPU were used at 100%.

To understand the causes of the idleness observed on cer-
tain dies, let us remember that the first optimization forces
all processes handling a request to be located on the same
die. This is illustrated in Figure 3: the processing of the re-
quest is entirely located on die 2. There is some traffic going
to the NIC connected to die 3, but this traffic does not induce
any processing on die 3. As a result, some dies may become
idle. This is in contrast with the stock Apache configuration,
in which dies that do not receive requests can participate in
the processing of requests received by other dies. This is il-
lustrated in Figure 2.b: the request is received on die 2, but it
also involves processing on dies 0 and 1. In addition, in the
stock Apache configuration, the Linux scheduler can freely
dispatch processes handling the requests on the various dies.
This is not the case when the first optimization is used be-
cause all processes handling a request are forced to be local-

ized on the die that manages the NIC12 on which the request
was received.

Forcing requests to be processed by a single die leads
to CPU underutilization if load is not adequately dis-
patched on dies. As explained in Section 4, in the case of
SPECweb2005, the load is injected by a set of clients issu-
ing requests in a closed-loop manner. An important point is
that clients target a different server NIC for each connec-
tion they issue. The NICs are chosen in a round-robin man-
ner, which works well only when dies process requests at the
same speed. If one die is slower than the others, then load in-
jection will be constrained by the speed of the slowest die13.
To check whether we face this case or not, we separately
compute the performance achieved by the different dies. We
observe that, performance-wise, dies can be classified into
two groups: slow dies (i.e. dies 0 and 3) and fast dies (i.e.
dies 1 and 2). SPECweb2005 results and average CPU usage
are reported in Table 7. Results show that with 6800 clients,
slow and fast dies achieve identical results in terms of the ra-
tio of good and tolerable requests observed by clients. When
increasing the number of clients, the ratio of good and toler-
able requests achieved by slow dies drops. This comes from
the fact that slow dies are overloaded and requests spend
time in server queues, which increases the latency perceived
by clients. In contrast, the performance achieved by fast dies
remains constant. This is explained by the fact that load is
injected at a constant rate, which is constrained by the speed
of slow dies. Note that the gray line represents the maxi-
mum number of clients that can be served, while ensuring
SPECweb2005’s minimum QoS level.

slow dies fast dies
Nb Good Tol. CPU Good Tol. CPU
clients (%) (%) (%) (%) (%) (%)
6800 99.9 100 95 99.9 100 82
7200 99.6 100 100 99.9 100 85
8000 15.4 90 100 99.9 100 85
8800 8.7 8.5 100 99.9 100 85

Table 7. Apache with the first optimization:
SPECweb2005 results and CPU usage with
round-robin injection on slow and fast dies (4-die setup).

A first and simple approach to solving the above-
described problem is to replace the round-robin selection of
NICs by a fixed assignment of NICs to clients. Results ob-
tained with this approach are reported in Table 8. We observe
that the maximum number of clients that can be served is still
equal to 7200 (gray line). More interestingly, we observe that
the injected load is no longer constrained by the speed of
slow dies: the load on fast dies increases when the number

12 Recall that NICs are physically connected to dies 0 and 3, but that each
die manages a fixed set of NICs.
13 This is a consequence of the fact that load is injected in a closed-loop
manner: clients wait to receive a reply before issuing a new request.



of clients increases. This solution is nevertheless not satisfy-
ing because load is homogeneously dispatched on slow and
fast dies, regardless of their capability.

slow dies fast dies
Nb Good Tol. CPU Good Tol. CPU
clients (%) (%) (%) (%) (%) (%)
6800 100 100 92 100 100 85
7200 99.9 100 99 100 100 95
8000 69.6 99 100 99.7 100 100
8800 24.4 85.2 100 53.4 97.8 100

Table 8. Apache with the first optimization:
SPECweb2005 results and CPU usage with fixed injection
on slow and fast dies (4-die setup).

6.2 Solution
Real-world Web infrastructures usually rely on one or
more Web switches to dispatch load between multiple Web
servers [Cardellini 2002]. We decided to extend this existing
facility to efficiently dispatch load among dies. Since each
Apache instance is responsible for its own set of NICs, the
load balancer considers each set of interfaces as a different
machine. It does thus balance the load in the same way as is
done with distinct physical machines.

Note that since we did not have another machine able to
handle a 20 Gb/s network traffic, we implemented the load
balancing mechanism at the client-side. The implementation
is similar to a classical layer 4 two-way request routing
mechanism [Cardellini 2002]: the choice of the target die
is entirely performed in a content-blind manner, and only
depends on the estimated current load of the dies. This load
is evaluated using the number of pending requests on each
die. Note that this mechanism could be integrated with no
extra cost in a cluster-scale load-balancing solution.

6.3 Evaluation
We have evaluated the load dispatching optimization. We re-
port in Table 9 the SPECweb2005 results at 4 dies, as well as
the CPU consumption. The maximum number of clients that
can be served is now equal to 8000 (gray line). Moreover,
slow and fast dies exhibit the same CPU usage. This proves
that the load dispatching strategy is efficient. Results at 1, 2
and 4 dies, as well as improvement over the stock Apache
configuration, are reported in Table 2 (third line). We ob-
serve that, at 4 dies, this optimization improves performance
by 11% compared to Apache running with the first optimiza-
tion, and by 21% compared to the stock Apache configura-
tion. Finally, let us remark that the load dispatching problem
identified in this section was the source of the very small per-
formance hit (-2.5%) observed at 2 dies when Apache only
runs the first optimization (Table 2, second line).

slow dies fast dies
Nb Good Tol. CPU Good Tol. CPU
clients (%) (%) (%) (%) (%) (%)
6800 99.9 100 90 100 100 90
7200 99.9 100 98 100 100 98
8000 97.8 100 100 98.9 100 100
8800 25.4 97.8 100 54 98 100

Table 9. Apache with the first and second optimizations:
SPECweb2005 results and CPU usage on slow and fast dies
(4-die setup).

7. Third optimization: removing software
bottlenecks

The first two optimizations presented in this paper consists
in avoiding inefficient utilization of hardware resources. In
this section, we focus on software bottlenecks. We start by
explaining how we profiled the Linux-Apache-PHP software
stack to find bottlenecks. More precisely, we present a sim-
ple metric and show how we used it to discover a bottle-
neck: a function located in the Apache core that induces con-
tention within the Linux Virtual File System (VFS) layer by
frequently accessing file metadata. We then present a solu-
tion, which consists in implementing a cache for file meta-
data. Finally, we evaluate the proposed mechanism and show
that Apache running with the three optimizations is 33.3%
more efficient than the stock Apache configuration in the 4-
die setup.

7.1 Problem diagnosis
Software bottlenecks are caused by functions exhibiting a
performance drop from a 1-die to a 4-die setup. The per-
formance of a function can be measured using the number
of cycles spent in the function per byte transmitted to the
clients. A function is more efficient at 1 die if it spends less
cycles per transmitted byte than at 4 die. Let NCPB1_die

f

(resp. NCPB4_dies
f ) be the number of cycles spent in a

function f per transmitted byte at 1 die (resp. 4 dies). More-
over, let PC4_dies

f be the percentage of cycles that are spent
in function f at 4 dies. We define the potential performance
gain of function f , noted PPGf , as the improvement that
would be observed if function f was as efficient at 4 dies
as at 1 die. The potential performance gain of function f is
expressed in percentage of cycles and is defined as:

PPGf =
NCPB4_dies

f −NCPB1_die
f

NCPB4_dies
f

× PC4_dies
f

To illustrate this metric, let us consider the case of a
function f which requires 2 cycles per transmitted byte at
1 die and 10 cycles per transmitted byte at 4 dies. Func-
tion f is 5 times less efficient at 4 dies than at 1 die. If
the percentage of cycles spent in function f at 4 dies is
20%, then the potential performance gain of function f is



PGf = 10−2
10 × 20% = 16%. This means that if function

f was as efficient at 4 dies as at 1 die, the performance of the
overall system at 4 dies would be 16% better.

It is important to note that the potential performance
gain of a function f only accounts for the cycles spent
executing instructions defined within function f : it does not
take into account the cycles spent in functions called by f .
The potential gain metric has been defined in such a way
on purpose. Otherwise, this is always the “root” function
that would have the highest potential performance gain. This
information would not help finding bottlenecks.

We have computed the potential performance gain of all
functions used in the Linux-Apache-PHP stack. Functions
with the highest potential performance gains are depicted in
Table 10. We observe that all the listed functions belong to
the OS kernel and libraries. Recall that our goal is to resolve
problems at the application level (i.e. Apache or PHP). In
order to detect such bottlenecks, we look for the application-
level functions that are responsible for the higher number of
calls to functions listed in Table 10. To perform this task,
we created a profiler based on sampling, which registers
complete function call chains. We found out that a function
belonging to the core of Apache accounts for 45% of the
calls to the functions of the VFS layer referenced in Table 10.
This function is called ap_directory_walk. In the next
section, we explain how we modified the Apache Web server
to reduce the number of calls to that function.

Function Potential performance gain (%)
__d_lookup 2.49%
_atomic_dec_and_lock 2.32%
lookup_mnt 1.41%
copy_user_generic_string 0.83%
memcpy 0.76%

Table 10. Apache with the first and second optimiza-
tions: highest potential performance gains in the Linux-
Apache-PHP stack.

7.2 Solution
In order to improve the efficiency of Apache, the first step
is to understand the behavior of the ap_directory_walk
function. This function is about 730 lines long and it took
us less than 2 days to grasp its principle. This function per-
forms the following tasks: it retrieves information about the
requested file (size and last modification time) and checks
that the server has the right to process the current request.
This consists in checking that the requested file exists, and
in walking through the file’s directory hierarchy to look for
configuration files and to check the directories’ access rights.
We can remark that two calls to ap_directory_walk with
the same request as argument will return the same result as
long as configuration files and directories are not modified.
Consequently, a way to improve the performance of Apache
is to cache the results of calls to ap_directory_walk. Be-

fore calling the function, Apache checks whether a similar
request has already been processed. If this is the case (i.e.
the result is found in the cache), then Apache allows the re-
quest to be processed without executing the function.

We use the inotify kernel subsystem to monitor
changes in the file system and invalidate cache entries that
are no longer valid. Note that files served by SPECweb
are read-mostly and directory permissions never change.
Caching the results of the ap_directory_walk is thus very
efficient. We believe that this is also the case in most produc-
tion servers, in which a majority of files remain in a steady
state and most mutable data are stored in databases.

7.3 Evaluation
We evaluated the performance gain brought by this third op-
timization. Results are reported in Table 2 (fourth line). At 4
dies, this optimization improves performance by 10% com-
pared to Apache with the first two optimizations, leading to
an overall 33% improvement compared to the stock Apache
configuration. Note that, when used in the 1-die setup, the
cache also allows skipping calls to ap_directory_walk.
This explains why this optimization (contrarily to the other
ones) also slightly improves the performance at 1 die
(+4.5%).

8. Lessons learned
As pointed out by other researchers [Hardesty 2010,
Pesterev 2010], the major difficulty of multicore perfor-
mance troubleshooting is often to clearly identify the root
cause of a problem rather than to come up with an effective
solution. In the course of our study, we faced a number of
practical and methodological difficulties in this regard. This
section provides a summary of the main lessons derived from
our experience.

Obtaining accurate profiling results is difficult. We ran
into a number of problems when trying to profile the system
with Oprofile [OProfile]. First, calibrating the accuracy of
the tool was not trivial. On the one hand, Oprofile was
not able to support high sampling frequencies (it frequently
reported that samples were lost, which was confirmed by
highly-variable results). On the other hand, it was tedious
to determine a sampling rate that was both achievable and
insightful. Second, under high load, it was difficult to start
and stop sampling at precise points in time. This resulted
in inaccurate results, because samples could accidentally
be collected during warm-up and ramp-down phases of the
benchmark. Increasing the priority of Oprofile (using Linux
scheduling groups) did not solve this problem.

In order to avoid these issues, we developed lightProf,
a lightweight profiler that periodically dumps the values of
some hardware events associated with timestamps. This pro-
filer is not based on frequency sampling: it reads and dumps
exact values of hardware events (e.g. absolute number of L3
misses since the beginning of the profiling) and does not re-



quire any calibration. Since timestamps are associated with
the dumped values, warm-up and ramp-down phases of the
benchmark can also be easily wiped off when analyzing re-
sults.

Exhaustive profiling is not possible. Hardware-related is-
sues are especially hard to find due to the amount of possi-
ble bottlenecks. Our machine has 123 configurable hardware
events to detect such issues and most of them can be further
specialized with unit masks. Moreover, it is only possible to
monitor 4 hardware events per core at the same time. Be-
sides, multiplexing these counters in order to improve the
number of events is not a panacea since, from our experi-
ence, it greatly reduces the accuracy of the results. Conse-
quently, testing and analyzing results for all these events is
not a viable option, especially when each experiment runs
for a long time (tens of minutes in our case).

We started with a global performance metric, the IPC,
to convince ourselves of potential hardware-related issues.
It then took us some time to determine a set of essential
hardware events for every part of the machine (caches, HT
links, etc.) and for the main interactions between these parts
(e.g. remote memory accesses due to software and I/O). We
ended up with a pool of 37 specialized hardware events
which gives a global overview of the machine. These data
allowed us to compute all the metrics used in this paper (HT
link usage, cache misses, memory accesses, etc.) in order to
spot inefficient usage of hardware resources.

Pinpointing issues requires multiple viewpoints. The pre-
vious step provides a summarized view of possible hardware
symptoms and considers software as a black box. This step
may not always be sufficient to track down a performance
bottleneck, either because the pathological usage of hard-
ware resources cannot be easily explained or because it is a
purely software problem. In such a situation, it is necessary
to precisely determine the most relevant portions of code
to be considered and improved. From our experience, this
search cannot always be easily achieved by only considering
the evolution of the time spent in particular functions. Two
other indicators are of a crucial help in this process: the po-
tential performance gain (as defined in Section 7.1) and the
call chains, used to find which functions are calling poorly
scalable functions. We implemented a custom profiler, based
on the Performance Analysis Utility available in the kernel
tree, to easily compute the potential performance gain met-
ric and the complete function call chains.

9. Concluding remarks and discussion
In this paper, we have illustrated the importance of
application-level optimizations on NUMA multicore ma-
chines. We have described the methodology employed to di-
agnose three performance bottlenecks on the Apache Web
server and we have proposed solutions that are simple to
implement by application developers. Our optimized stack

yields a 33% performance gain and almost reaches perfect
scalability from 1 to 4 dies. We believe that the remaining
5.4% performance difference is due to the slight decrease of
IPC between 1 and 4 dies and to minor software bottlenecks.
Below, we discuss some additional points concerning related
and future work.

Applicability of our results. We believe that the condi-
tions leading to the memory problems we observed are not
specific to our machine, but rather present in many other
current and upcoming hardware architectures. Indeed, most
multiprocessor architectures released nowadays are not per-
fectly symmetric. As an example, Baumann et al. [Baumann
2009] describe a 32-core machine where some dies need 4
hops to access memory while others only need a maximum
of 2 hops. Moreover, emerging architectures such as Intel’s
SCC [Intel] introduce even more asymmetry between cores:
some of them have no 0-hop access to memory. Furthermore,
we intend to evaluate the server behavior with other work-
loads and, in particular, under open and partially-open loop
injections models [Schroeder 2006]. We expect the hardware
asymmetry to still have a noticeable impact in such contexts.

Partitioned design. Our strategy using multiple Web server
instances in order to improve parallel performance has been
employed in the past. Previous works [Boyd-Wickizer 2010,
Pesterev 2010] have described setups where each core runs
a pinned Apache instance. In the present paper, we highlight
an additional benefit of this approach on NUMA systems:
mitigating the negative effects of heterogeneous memory
access performance. We also show that it requires careful
dispatching of the load on the different dies. Besides, we
note that such a partitioned application deployment is a
natural fit for new architectures like SCC, which do not
feature hardware-managed cache coherence.

OS-level considerations. Very recent research by Boyd et
al. [Boyd-Wickizer 2010] also pinpointed bottlenecks in the
VFS layer and proposed kernel-level reengineering to limit
contention on the directory cache. Unfortunately, the kernel
patches described in the above-mentioned paper are not pub-
licly available yet. It would be interesting, as future work, to
study how this patched kernel and our simple application-
level optimizations respectively impact the server perfor-
mance. Moreover, inspired by previous work on hardware
performance counters [Tam 2007, Zhuravlev 2010], we also
plan to investigate how some of our profiling guidelines
could be integrated within the logic of an operating sys-
tem, so as to facilitate performance diagnosis and improve
resource management.
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