
Efficient Workstealing for Multicore Event-Driven
Systems

Fabien Gaud, Sylvain Genevès, Renaud Lachaize
University of Grenoble

France
first.last@inria.fr

Baptiste Lepers, Fabien Mottet, Gilles Muller
INRIA
France

first.last@inria.fr

Vivien Quéma
CNRS
France

vivien.quema@inria.fr

Abstract—Many high-performance communicating systems are
designed using the event-driven paradigm. As multicore plat-
forms are now pervasive, it becomes crucial for such systems
to take advantage of the available hardware parallelism. Event-
coloring is a promising approach in this regard. First, it allows
programmers to simply and progressively inject support for the
safe, parallel execution of multiple event handlers through the
use of annotations. Second, it relies on a workstealing algorithm
to dynamically balance the execution of event handlers on the
available cores.

This paper studies the impact of the workstealing algorithm
on the overall system performance. We first show that the
only existing workstealing algorithm designed for event-coloring
runtimes is not always efficient: for instance, it causes a 33%
performance degradation on a Web server. We then introduce
several enhancements to improve the workstealing behavior. An
evaluation using both microbenchmarks and real applications,
a Web server and the Secure File Server (SFS), shows that
our system consistently outperforms a state-of-the-art runtime
(Libasync-smp), with or without workstealing. In particular,
our new workstealing improves performance by up to +25%
compared to Libasync-smp without workstealing and by up to
+73% compared to the Libasync-smp workstealing algorithm, in
the Web server case.

Keywords-workstealing; multicore; system services; perfor-
mance; event-driven;

I. INTRODUCTION

Event-driven programming is a popular approach for the
development of robust applications such as networked systems
[1], [2], [3], [4], [5], [6], [7], [8]. This programming and
execution model is based on continuation-passing between
short-lived and cooperatively-scheduled tasks. Its strength
mainly lies in its expressiveness for fine-grain management
of overlapping tasks, including asynchronous network and
disk I/O. Moreover, some applications developed using the
event-driven model exhibit lower memory consumption and
better performance than their equivalents based on threaded
models [9], [10].

However, a traditional event-driven runtime cannot take
advantage of the current multicore platforms since it relies on a
single thread executing the main processing loop. To overcome
this restriction, a promising approach, event coloring, has
been proposed and implemented within the Libasync-smp
library [11]. Event coloring tries to preserve the serial event ex-
ecution model and allows programmers to incrementally inject

support for safe parallel execution through annotations (colors)
specifying events that can be handled in parallel. The main
benefits of the event coloring approach are that it preserves
the expressiveness of pure event-driven programming, offers
a relatively simple model with respect to concurrency, and is
easily applicable to existing event-driven applications.

A side-effect of event coloring is that it sometimes causes
unbalances in the processing load handled by the different
cores of a machine. To improve performance, Libasync-smp
designers have thus proposed a workstealing (WS) mechanism
in charge of balancing event executions on the multiple cores.
We actually show in this paper that enabling workstealing
can hurt the throughput of real systems services by as much
as 33%. Using microbenchmarks, we have identified two
reasons for this performance decrease. First, the workstealing
mechanism makes naïve decisions. Second, data structures
used in the runtime are not optimized for workstealing.

The contributions of this paper are twofold. First, we
introduce enhanced heuristics to guide workstealing decisions.
These heuristics try to preserve cache locality and avoid
unfavorable stealing attempts, with little involvement required
from the application programmers. We then present Mely
(Multi-core Event LibrarY), a novel event-driven runtime
for multicore platforms. Mely is backward-compatible with
Libasync-smp and its internal architecture has been designed
with workstealing in mind. Consequently, Mely exhibits a very
low workstealing overhead, which makes it more efficient for
short-running events.

We evaluate Mely with a set of micro-benchmarks and
two applications: a Web server and the Secure File Server
(SFS) [12]. Our evaluations show that Mely consistently
outperforms (or, at worse, equals) Libasync-smp. For in-
stance, we show that the Web server running on top of Mely
achieves a +25% higher throughput than when running on top
of Libasync-smp without workstealing, and a +73% higher
throughput than when running on top of Libasync-smp with
workstealing enabled.

The paper is structured as follows. We start with an analysis
of Libasync-smp in Section II. We then propose new heuristics
to improve event workstealing in Section III. The implementa-
tion of the Mely runtime is presented in Section IV. Section V
is dedicated to the performance evaluation of Mely. Finally,
we discuss related work in Section VI, before concluding the

paper in Section VII.

II. THE LIBASYNC-SMP RUNTIME

This section describes the Libasync-smp runtime [11]. We
start with a description of its design. Then, we detail the
workstealing algorithm used to dynamically balance events
on cores. Finally, we evaluate and analyze Libasync-smp
performance on two real-sized system services.

A. Design

Libasync-smp is a multiprocessor-compliant event-driven
runtime. Its implementation relies, for each core, on an event
queue and a thread. Events are data structures containing a
pointer to a handler function, and a continuation (i.e. a set
of parameters carrying state information). Event handlers are
executed by the core thread associated with the event queue.
Handlers are assumed to be non-blocking, which explains why
only one thread per core is required. The architecture of the
Libasync-smp runtime is illustrated in Figure 1.

Since several threads (one per core) are simultaneously
manipulating events, it is necessary to properly handle the
concurrent execution of different handlers. An event execution
updating a data item must execute in mutual exclusion with
other events accessing the same data item. To ensure this
property, Libasync-smp does not rely on the use of locking
primitives in the code of the handlers. Rather, mutual exclusion
issues are solved at the runtime level using programmer
specifications. More precisely, programmers can restrain the
potential parallel execution of events using annotations (named
colors and represented as a short integer). Two events with
different colors can be handled concurrently, whereas events
of the same color must be handled serially. This is achieved
by dispatching those events on the same core. Note that,
events without annotations are all mapped to a default unique
color in order to guarantee safe execution. The Libasync-smp
implementation assigns new events to cores using a simple
hashing function on colors. Load balancing is adjusted with a
workstealing algorithm described in Section II-B.

Interestingly, the coloring algorithm allows implementing
various forms of parallelism. For instance, it is possible
to let multiple events associated to the same handler run
concurrently on disjoint data sets (e.g., to ensure that different
client connections are concurrently processed in a Web server).
It is also possible to enforce that all events associated to the
same handler be executed in mutual exclusion (e.g., when a
handler manages global state).

Event coloring is less expressive than locking (e.g. it does
not support reader-writer semantics) but less error-prone and
sufficient for the needs of most server applications. Besides,
events can still be combined with locks in the rare cases where
mutual exclusion must span several handlers.

Because event queues can be concurrently updated by
different cores, their access must be synchronized. This is
implemented using spinlocks; indeed, there is no interest in
yielding cores (only one thread per core), if energy is not a
concern.

Event queueThread

Color 0

Color 1

Color 2

Core 1 Core 2 Core 3

Figure 1. Libasync-smp architecture.

B. Workstealing algorithm

As mentioned in the previous section, colored events are
dispatched on the cores using a hashing function. This simple
load balancing strategy ignores the fact that some colors might
require more time to be processed than others (e.g., when there
are many events with the same color or when different events
have different processing costs). The Libasync-smp library
thus provides a dynamic load balancing algorithm based on
the workstealing principle. When a core has no more events
to process, it attempts to fetch events from other core queues.

The workstealing algorithm is presented as pseudo-code
in Figure 2. First, the stealing core builds a core_set
containing an ordered set of cores. This is achieved calling
the construct_core_set function (functions used in the
pseudo-code are detailed in the next paragraph). For each core
in the set, the stealing core checks whether events can be
stolen using the can_be_stolen function. If events can be
stolen from this core, the stealing core chooses one color to be
stolen using the choose_color_to_steal function. The
stealing core then builds a set containing all the events with the
chosen color using the construct_event_set function.
If this set is not empty, the stealing core migrates the set of
events in its own queue using the migrate function.

We now describe the implementation of the above men-
tioned functions. construct_core_set builds a set that
contains as first element the core that has the highest number of
events in its queue. The set then contains the successive cores
(based on core numbers): for instance, on a 8-core computer,
if core 6 currently contains the highest number of events,
then core_set is equal to {6, 7, 0, 1, 2, 3, 4, 5}. The
call to can_be_stolen returns true if the core given as
parameter has at least events with two different colors in its
queue. Indeed, two colors are required because, in order to
enforce the mutual exclusion properties of the runtime, the
color of the event currently being processed on a core cannot
be stolen. A steal can thus only be performed if there are events
with another color. choose_color_to_steal scans the
event queue of the core given in parameter and selects the
first color (i) that is not associated with the event currently
being processed, and (ii) that is associated with less than half

of the events in the queue. Note that such a color might not
exist. The construct_event_set function builds a set
comprising all events stored in the queue of the stolen core that
are associated with the color given as parameter. Moreover,
it also removes events from the victim queue. Note that this
function might require scanning the entire event queue. This is
the case when the last event stored in the queue has the color
given as parameter1. Finally, the migrate function appends
a set of events to the queue of the stealing core.

core_set = construct_core_set(); (1)
foreach(core c in core_set) {

LOCK(c);
if(can_be_stolen(c)) { (2)

color = choose_colors_to_steal(c); (3)
event_set = construct_event_set(c, color); (4)

}
UNLOCK(c);
if(!is_empty(event_set)) {

LOCK(myself);
migrate(event_set); (5)
UNLOCK(myself);
exit;

}
}

Figure 2. Pseudo code of Libasync-smp workstealing algorithm.

C. Performance evaluation

Zeldovich et al. have evaluated the performance of the
Libasync-smp library on two system services: the SFS file
server [12] and a Web server, which is not publicly available.
While this study shows that the bare Libasync-smp achieves
speedups on multicore platforms, workstealing has not been
fully evaluated2.

Therefore, we have developed a realistic Web server based
on the design described in [11], and we have run both SFS
and our Web server with workstealing enabled and disabled.
Details on the Web server and the benchmark configuration
(hardware and software settings) can be found in Section V.
For all experiments, standard deviations are very low (less than
1%).

Figure 3 shows the throughput achieved by SFS when 16
clients are issuing read requests on a 200MB file. It high-
lights that the workstealing algorithm significantly improves
the server throughput (+35%). The reason is that it mostly
executes expensive, coarse-grain cryptographic operations.

In contrast, Figure 4 shows the throughput of the Web server
with a varying number of clients requesting 1KB files. It
clearly shows that the performance is negatively impacted by
the workstealing algorithm (up to -33%). The reason is that the
Web server relies on shorter event handlers than the ones used
in SFS. Consequently, workstealing costs are proportionally
higher.

To better understand the previous results, we measured the
average time spent to steal a set of events (for both SFS and the

1However, this is not always necessary since the runtime maintains a
counter of pending events for each color.

2More precisely, the initial publication on Libasync-smp has only studied
the impact of workstealing on a microbenchmark.

 0

 20

 40

 60

 80

 100

 120

 140

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Libasync-smp
Libasync-smp - WS

Figure 3. Performance of the SFS file server with and without workstealing
algorithm.

Web server) and the average time spent to execute this set of
stolen events. Results are summarized in Table I. We observe
that the time spent to perform a steal (impacting one or several
events) in SFS is on average 4.8 Kcycles and allows stealing
sets of events whose average processing time is 1200 Kcycles.
In contrast, a steal in the Web server requires a drastically
longer average time (197 Kcycles) and allows stealing sets
of events whose average processing time is much shorter (20
Kcycles).

We attribute the poor performance achieved by the Web
server when workstealing is enabled to two main causes.
First, the Libasync-smp workstealing algorithm is naïve: a
stealing core never checks the relevance of a steal before
performing it. More precisely, the construct_core_set,
can_be_stolen and choose_color_to_steal func-
tions do not take into account the cost of the steal, nor the
processing time of the stolen events.

Table I
TIME SPENT STEALING A SET OF EVENTS VS. TIME SPENT EXECUTING

THESE EVENTS.

System Stealing time (cycles) Stolen time (cycles)
SFS 4.8K 1200K
Web server 197K 20K

Moreover, the construct_core_set function does not
consider cache proximity between cores. We monitored the
number of L2 cache misses on the Web server and we observed
a large increase of up to +146% when enabling workstealing.
This result suggests that an efficient workstealing algorithm
should try to favor dispatching events on cores sharing a L2
cache.

Second, the implementation of Libasync-smp has not been
designed with workstealing in mind. As described in II-B,
the construct_event_set function might need to scan
the entire event queue of the stolen core to build the set of
events to be stolen. On our test platform (see Section V for
details), the time required to scan a single event in the list (i.e.
to follow a link in the list and to check the color of the next

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200 1400 1600 1800 2000

Th
ro

ug
hp

ut
 (K

R
eq

ue
st

s/
s)

Number of Clients

Libasync-smp
Libasync-smp - WS

Figure 4. Performance of the SWS Web server with and without workstealing
algorithm.

event) is about 190 cycles. This explains why the stealing cost
can become very significant when the number of events stored
in queues is high. For instance, in the case of the Web server,
the most highly loaded cores had on average more than 1000
pending events. These results show that it is crucial to reduce
the stealing costs.

III. IMPROVED WORKSTEALING ALGORITHM

In this section, we present three complementary
heuristics aimed at improving the efficiency of the
workstealing algorithm, by making good decisions in
the construct_core_set, can_be_stolen and
choose_color_to_steal functions introduced in
Section II-B. These heuristics have two main goals. First,
they aim at improving cache usage by leveraging cache
locality between cores on a same die (locality-aware
stealing), and taking into consideration the size of the data
sets accessed by events (penalty-aware stealing). Second,
they aim at ensuring that it takes less time to steal a set of
events than to execute it (time-left stealing).

A. Locality-aware stealing

The heuristic presented in this section aims at improv-
ing the quality of the victim choice implemented in the
construct_core_set function. This heuristic is based
on the observation that the hierarchy of caches has a huge
impact on the performance of multicore processors. Some
of these caches are dedicated to one core, some others are
shared by a subset of the cores. For instance, in 4-core Intel
Xeon processors, cores are divided in 2 groups of 2 cores.
Each core has a private L1 cache and shares a L2 cache with
the other core in its group. The AMD 16-core architecture
features 4 groups of 4 cores. Each core has private L1 and L2
caches, and shares a L3 cache with the 3 other cores in its
group. In addition, memory accesses between groups are not
uniform [13].

It is thus becoming crucial to design algorithms that take the
memory hierarchy into account. Stealing costs highly depend
on the distance between the stealing and the victim cores.

Table II
MEMORY ACCESS TIMES ON AN INTEL XEON E5410 MACHINE

Memory hierarchy level Access time (cycles)
L1 cache 4
L2 cache 15
Main memory 110

Table II shows the latency of the various levels in the memory
hierarchy of the machine described in Section V-A. We notice
that accessing the event queue of a distant core can be up to
7.3 times slower than for a neighbor core (ie. a core sharing
a L2 cache). A similar observation can be made on the time
required to access the data set associated with an event (i.e.
the data items encapsulated in or referenced by a continuation)
stored on a distant queue.

The locality-aware stealing heuristic aims at improving
cache usage by minimizing the costs of cache misses. To this
end, the construct_core_set function returns a set of
cores ordered by their distance from the stealing core. 3.

B. Time-left stealing

As we highlighted in Section II, migrating an event from
one core to another is costly. This is notably because that
stealing requires locking the victim core queue. The time-left
heuristic aims at making more relevant decisions on whether
cores should be chosen as victims or not. For this purpose,
the processing time of events is taken into account.

More precisely, the time-left heuristic consists in dynam-
ically classifying colors into two sets: a set of colors that
are worth stealing and a set of colors that should not be
stolen. We define a worthy color as a color such that the
processing time of the set of events associated to that color is
superior to the time it would take to steal the set. The function
can_be_stolen is modified to return true only if such a
color exists for a given core. This heuristic requires knowing
the average time it takes to steal one single event. This can be
known by profiling the runtime. The time-left heuristic also
requires knowing the average processing time of the various
handlers. This can be achieved by first profiling the application
and then annotating the code of handlers.

C. Penalty-aware stealing

This heuristic aims at improving the choice of the color
to be stolen. The time-left heuristic described in the previous
section relies on the temporal properties of event handlers to
classify colors as worthy or not. The penalty-aware heuristic
aims at choosing the best color from a set of worthy colors
based on the memory usage of events associated with each
color.

The underlying idea can be explained as follows. Events
whose handlers access a small data set are good candidates for
being stolen since their execution will not introduce substantial
cache misses and cache pollution on the stealing core. In
contrast, the case of event handlers accessing large data sets

3This knowledge can be obtained from the operating system and/or mea-
surements performed at the start of the runtime.

requires a more detailed inspection. If the data set is short
lived (e.g. when a handler allocates a buffer and frees it before
its completion), then stealing the corresponding events can
improve parallelism and does not increase the overall number
of cache misses. However, event associated with large data
sets that are long-lived (e.g. passed, by value or reference,
from a handler to another one) are not good candidates for
being stolen. Indeed, migrating such events on distant cores
might cause high cache miss rates.

The penalty-aware heuristic allows the application developer
to set stealing penalties on event handlers. Events processed
by handlers with a high stealing penalty will less likely be
stolen than events with a low stealing penalty. This penalty
mechanism allows artificially reducing the “attractiveness” of
events accessing large, long-lived data sets. In the current
state of our work, these annotations are set by the developer
based on feedback from application profiling. An underlying
assumption is that a given event handler has a relatively stable
execution time. This hypothesis is reasonable in our context
for two complementary reasons: (i) the small granularity of
the considered tasks, and (ii) the effects of the locality and
penalty aware strategies, which limit fluctuations caused by
cache misses.

IV. THE MELY RUNTIME

In this section, we present Mely, an event-based multicore
runtime that relies on the event-coloring paradigm. Mely has
been designed so as to minimize event stealing costs and
implements the three heuristics presented in the previous
section. While Mely is backward compatible with Libasync-
smp, it differs from it in the workstealing algorithm and in the
implementation strategies for storing and managing events. We
start with a description of the design of the Mely runtime. Then
we discuss the implementation of the workstealing algorithm.
Finally, we provide some additional implementation details.

A. Design

Similarly to Libasync-smp, each core runs a single thread
in charge of executing event handlers. However, Mely rethinks
the way events are manipulated by cores. To drastically
reduce the processing time of various workstealing functions
like construct_event_set, Mely groups events with the
same color in distinct queues, called color-queue.

Each core maintain a list of color-queues which
are chained together using a doubly-linked list, called a
core-queue. Figure 5 depicts the architecture of the
Mely runtime that is running on each core (the notion of
stealing-queue is described in Section IV-B).

Using this organization, a core chooses the next event to be
processed by simply taking the first event stored in the first
color-queue. To prevent starvation, a core is not allowed
to indefinitely process events with the same color. There is
thus a threshold that defines the maximum number of events
with the same color that can be batched processed4. In all

4When the threshold is reached, the runtime carries on with the next
color-queue in the core-queue.

Core X

core-queue

stealing-queue

Color 0

Color 1

Color 2

Color 3

color-queue

Thread

Figure 5. Mely runtime architecture.

experiments presented in this paper, the threshold is set to
10. When a color-queue is empty, it is removed from the
core-queue.

When registering a new event, the producing core must
first retrieve the adequate color-queue. To that end, like
Libasync-smp, Mely uses a small (64KB), statically allo-
cated array that keeps track of mappings between colors
and core-queues. Moreover, if not already present, the
producing core also inserts the color-queue into the
core-queue of the core it belongs to.

Accesses to color-queues and core-queues must be
done in mutual exclusion. To that end, as in Libasync-smp,
each core owns a spinlock that is used by the different cores
when accessing their color-queues and core-queues.
Note that we cannot use a spinlock per color. Indeed, that
would not guarantee mutual exclusion when accessing the
core-queues. Moreover, it is important to outline that a
runtime relying on event-coloring for managing multiprocessor
concurrency cannot store events using DEqueue structures [14]
(as often advised in other workstealing-enabled runtimes). The
reason is that these structures make the assumption that only
one thread registers events in a given queue. In the event-
coloring approach, several cores can simultaneously try to
register events in the queue of any given core.

B. Workstealing implementation

Mely’s workstealing implementation is based on Libasync-
smp which has been extended to add the locality-aware, time-
left, and penalty-aware heuristics. In this section, we detail the
implementation of these heuristics.

a) Locality-aware stealing.: The implementation of this
heuristic is straightforward ; the construct_core_set
function build the core set with respect to the cache hierarchy.
We use the reification of the cache hierarchy provided by the
Linux kernel and made accessible in the /sys file system.
More precisely, Mely builds a cache map at startup time, that
allows each core to discover its neighbors.

b) Time-left stealing.: The implementation of this strat-
egy relies on the use of one stealing-queue per core
(see Figure 5). These lists store the set of color-queues
representing worthy colors. Within a stealing-queue,

color-queues are ordered according to the cumulative pro-
cessing time of all events they store. Note that, in order to re-
duce insertions costs, the stealing-queue is only partially
ordered: the queue is split in three time-left intervals. Within
an interval, color-queues are not ordered. This allows
balancing insertion and lookup costs in a stealing-queue.

When a new event is inserted in a color-queue,
the cumulative processing time of the queue is incre-
mented accordingly. Symmetrically, when an event is re-
moved from a color-queue, its cumulative processing
time is decremented accordingly. When a color becomes
worthy, the corresponding color-queue is inserted in the
stealing-queue. The opposite operation is executed when
a color is no longer worthy.

As explained in Section III, in the current state of our work,
the average processing time of each event handler is provided
by the programmer after a profiling phase. The time required to
steal an event is obtained from the runtime built-in monitoring
facilities.

c) Penalty-aware stealing.: The implementation of the
penalty-aware heuristic required defining an annotation allow-
ing the user to set the workstealing penalty of each event
handler. This penalty is used when computing the cumulative
processing time of each color-queue. When an event
is inserted in a color-queue, rather than increasing the
cumulative processing time by the processing time of the
event, it is increased by the following value: event_time

ws_penalty .
Consequently, an event with a high workstealing penalty will
be perceived as requiring less processing time than it actually
does.

C. Additional implementation details

Mely is currently based on Gcc 4.3 and Glibc 2.7. Threads
are pinned on cores using the pthread_setaffinity_np
function. We have carefully optimized placement using
padding (ie. dedicating one or more cache lines) of private data
structures to prevent false sharing. TCMalloc [15] is also used
for efficient and scalable memory allocation, reducing con-
tention and increasing spatial locality with per-core memory
pools. Lastly, to improve its scalability and robustness, Mely’s
main event loop for managing network and file I/O replaces
the select()-based implementation of Libasync-smp with
the epoll Linux system call, while preserving a compatible
API with legacy applications developped for Libasync-smp. 5

Note that, to provide a fair comparison in the evaluation per-
formed in Section V, we also backported these optimizations
inside the legacy Libasync-smp runtime.

V. EVALUATION

In this section, we evaluate the Mely runtime. We first de-
scribe our experimental testbed. Then, we present microbench-
marks to analyze the individual effects of the heuristics pre-
sented in Section III. Finally, we study the performance of

5The performance gain brought by the epoll system call has been previously
observed in the context of highly loaded servers [16].

Mely using two real-sized system services: a Web server and
the SFS file system.

A. Experimental settings

The experiments are performed on a 8-core machine with
two quad-core Intel Xeon E5410 Harpertown processors. Each
processor is composed of 4 cores running at 2.33GHz and
grouped in pairs. A pair of cores from a same processor share
a 6 MB L2 cache. Consequently, each processor contains 12
MB of L2 caches. Memory access times are uniform for all
cores. The machine is also equipped with 8 GB of memory
and eight 1Gb/s Ethernet network interfaces.

For the server experiments, we use between 8 and 16 dual
core Intel T2300 machines acting as load injection clients. All
machines are interconnected using a Gigabit Ethernet non-
blocking switch.

All machines run a Linux 2.6.24 kernel, with hardware
counter monitoring support. Runtime and applications are
compiled using GCC 4.3.2 with the -O2 optimization flag and
run under Glibc 2.7. For all benchmarks, we observe standard
deviations below 1%.

B. Microbenchmarks

We use a set of microbenchmarks to study the performance
of Mely. We first evaluate the impact of the runtime design on
the behavior of the base workstealing (i.e. the workstealing
algorithm defined in Libasync-smp). Then, we study the
impact of the three workstealing heuristics.

d) Base workstealing.: To evaluate the benefits provided
by the careful data placement and the new queue structure, we
compare Mely’s performance to that achieved by Libasync-
smp when enabling and disabling the base workstealing. We
use a microbenchmark, called unbalanced that works as fol-
lows. It implements a fork/join pattern: at each round, 50000
events are registered on the first core. 98% of these events are
very short (100 cycles), whereas the other events are much
longer (between 10 and 50 Kcycles). Events are independent
(i.e. they are registered with different colors and can thus be
processed concurrently). When all events have been processed,
a new round begins. We repeat this operation during 5 seconds
and measure the number of events processed per second.

Table III
IMPACT OF THE BASE WORKSTEALING.

Configuration KEvents/s Locking time WS cost (cycles)
Libasync-smp 1310 0.93% -
Libasync-smp - WS 122 39.73% 28329
Mely 1265 0.89% -
Mely - base WS 1195 1.42% 2261

Results are presented in Table III. The unbalanced mi-
crobenchmark highlights the very bad results of the Libasync-
smp workstealing implementation when the input load is not
balanced. In particular, we notice that a core, on average,
locks its victim for 28 Kcycles, and only steals a set of
events requiring 484 cycles to be processed. Moreover, we
observe that almost 40% of the time is spent in runtime

locks. As a consequence, the base workstealing algorithm
strongly hurts the performance of Libasync-smp (-90%). This
microbenchmark also shows that Mely drastically mitigates
the performance hit of the base workstealing algorithm. More
precisely, it allows reducing the stealing time by a factor of
12.5. However, we can notice that the base workstealing also
decreases performances (-5.5%). This highlights the need for
smarter stealing heuristics.

e) Time-left stealing.: We evaluate the time-left heuristic
using the previously described unbalanced microbenchmark.
We measure the number of events processed per second
when using different workstealing algorithms. Results are
presented in Table IV. The time-aware workstealing allows
an improvement of 70% over the base workstealing algorithm
when executing in Mely. This can be explained by the fact that
the time-left heuristic refrains from stealing color sets with a
low or negative yield.

Table IV
IMPACT OF THE TIME-LEFT HEURISTIC.

Configuration KEvents/s Stolen time (cycles)
Libasync-smp 1310 -
Libasync-smp - WS 122 484
Mely - base WS 1195 445
Mely - time-aware WS 2042 49987

f) Penalty-aware Stealing.: We evaluate the penalty-
aware heuristic using a microbenchmark called penalty. This
microbenchmark works as follows: a single core starts with
many events of type A (i.e. events which trigger handler A)
associated to different colors, while the other cores start with
an empty event queue. When an event of type A is processed,
an event of type B with the same color is created. Moreover,
the event of type A creates an array fitting in the core cache.
Each event of type B accesses an offset of its parent array
and registers a new event of type B with the same color.
This operation is repeated until the array has been completely
accessed. This way, each core executes a set of events with
the same color that access the same array. In this benchmark,
idle cores have more opportunities to steal events of type B
but should preferably steal events of type A to preserve cache
locality.

We measure the total number of tasks treated by second.
Results are presented in Table V. The penalty of events of
type B was set to 1000. We first observe that Libasync-
smp achieves very low performance when workstealing is
enabled. In constrast, the penalty-aware workstealing allows
improving performance by 53% with respect to the Mely
runtime executing the base workstealing. These results can be
explained by the following fact: the load is initially unbalanced
(all events of type A are registered on the same core) and the
penalty-aware workstealing allows balancing the load, while
keeping a low number of L2 cache misses. Indeed, the number
of L2 cache misses per processed event is 95% lower than
when executing the base workstealing algorithm in Mely.

g) Locality-aware stealing.: We evaluate the locality-
aware heuristic using a microbenchmark called cache efficient.

Table V
IMPACT OF THE PENALTY-AWARE STEALING.

Configuration KEvents/s L2 misses/Event
Libasync-smp 1103 29
Libasync-smp - WS 190 167K
Mely - base WS 1386 42K
Mely - penalty-aware WS 2122 2K

This microbenchmark uses a fork/join pattern. At each round,
one core per pair of cores starts with a hundred events of type
A. The handlers for these events allocate an array fitting in
their cache and register two events of type B, associated to
different colors, on the same core. These events will sort the
first and the last part of the array (this mimics the beginning
of a merge sort). Once the handler of an event of type B has
finished sorting its array, it registers a synchronization event
of type C. When the two events of type C registered on each
array have been processed, the final part of the merge sort
occurs.

Results presented in Table VI show that the locality-aware
heuristic allows increasing the performance by 31%. This
is explained by the fact that this heuristic allows balancing
the load on cores on which no event of type A are initially
registered, while ensuring that handlers accessing the same
array are executed on neighbor cores. This results in a decrease
of L2 cache misses per event of about 83% with respect to
the version running the base workstealing.

Table VI
IMPACT OF THE LOCALITY-AWARE STEALING.

Configuration KEvents/s L2 misses/Event
Libasync-smp 1156 0
Libasync-smp - WS 1497 13
Mely - base WS 1426 12
Mely - locality-aware WS 1869 2

C. System services

In this section, we evaluate our propositions on two real-
sized system services. The first one is a Web server, SWS,
which mostly runs short duration handlers for processing
requests. The second use case is SFS [12]. Unlike the Web
server, SFS mainly executes coarse grain handlers (i.e. cryp-
tographic operations). In both cases, we compare the Mely
runtime (with workstealing enabled) and Libasync-smp with
and without workstealing.

1) SWS Web server: SWS handles static content, supports
a subset of HTTP/1.1, builds responses during start-up (an
optimization already used in Flash [6]), and handles errors
cases.

The architecture of SWS (illustrated in Figure 6) is similar
to the one described by Zeldovich et al. in their initial
work on Libasync-smp [11]. However, we optimized cache-
management since our workload fits in main memory.

SWS is structured in 9 event handlers. The Epoll is responsi-
ble of monitoring active file descriptors. When a file descriptor
has pending operations, it registers an event for either the

Parse

Request
Read

Request

Write

Response

Close

Epoll

Dec

Accepted

Clients

RegisterFd

InEpoll

Accept
GetFrom

Cache

Figure 6. SWS architecture

Accept or the ReadRequest handlers. Epoll is always associated
with color 0 (thus initially executing on the first core). The
Accept handler is in charge of accepting new connections. Like
in other Web servers, it is possible to specify the maximum
number of simultaneous clients. Events associated with this
handler are colored with color 1 (thus initially set on the
second core). The ReadRequest handler is in charge of reading
requests. The RegisterFdInEpoll handler allows to monitor a
new file descriptor. In order to manage concurrency, this han-
dler is colored like Epoll. The ParseRequest handler is used to
analyze the client request. The CheckInCache handler gets the
response from a map indexed by filename and containing pre-
built responses. The WriteResponse handler sends responses
to the client and the Close handler shuts down connections.
Finally, the DecClientAccepted handler decrements the current
number of accepted clients after closing a connection. This
handler is colored like Accept to manage concurrency.

ReadRequest, ParseRequest, WriteResponse and Close
events are colored in such a way that requests issued by distinct
clients can be concurrently served. For this purpose, we use
the file descriptor number of the socket as the color.

For load injection, we developed an event-based closed-loop
load injector [17] similar to the one described in [18]. It uses a
master/slave scheme, i.e. a master node synchronizes a set of
load injection nodes (each simulating multiple HTTP clients)
and collects their results.

We evaluate the Mely runtime on SWS when serving small
static files of 1KB size. We use 8 physical clients which
emulate between 200 and 2000 virtual clients. Each virtual
client repeatedly connects to the Web server and requests 150
files. One run lasts 30s and is repeated 3 times.

Figure 7 presents the throughput observed with three
runtime configurations: Libasync-smp with workstealing,
Libasync-smp without workstealing and Mely with worksteal-
ing enabled (with all heuristics activated). To assess the perfor-
mance of SWS, we also include results for two other efficient
and well-established Web servers: the worker (multithread)
version of Apache [19] and a multiprocess configuration of
the event-based µserver [1]. We observe that SWS running on
Mely outperforms all the other configurations. µserver shows
that the N-Copy approach has good performances. However, as
explained in Section VI, this approach is not always applicable.

In Libasync-smp, enabling the workstealing algorithm de-
creases performance under this workload by up to 33%. As
explained in Section II, this degradation is due to two main
factors: (i) very high stealing costs (197 Kcycles) that are

 0

 50

 100

 150

 200

 200 400 600 800 1000 1200 1400 1600 1800 2000

Th
ro

ug
hp

ut
 (K

R
eq

ue
st

s/
s)

Number of Clients

Mely - WS
Userver

Libasync-smp
Libasync-smp - WS

Apache

Figure 7. Performance of SWS.

superior to the stolen processing time (20 Kcycles), (ii) a
drastic increase in L2 cache misses (+146%) over Libasync-
smp without workstealing.

Mely outperforms Libasync-smp with workstealing by up
to 73%. It steals 14% more processing time (23 Kcycles)
and is 32 times faster to steal (6K cycles), thus achieving
workstealing efficiency. Moreover, profiling indicates that the
locality- and penalty-aware optimizations decrease the number
of L2 cache misses by 24%. Mely also improves performance
by nearly 25% compared to the Libasync-smp runtime without
workstealing. Profiling reveals that the workstealing mecha-
nism relieves the core in charge of the Epoll handler from
request processing and thus helps improving responsiveness
to the incoming network activity.

Additionally, we measure the performance of Mely with
workstealing disabled. This configuration has slightly lower
performance than Libasync-smp without workstealing (be-
tween -7% to -20%) mainly due to the use of many short-
lived colors for each connection. Indeed, these short-lived
colors introduce costly insertion and removal operations of
color-queues in core-queues. This result emphasizes
the efficiency of the Mely workstealing algorithm.

2) Secured File Server (SFS): SFS is an NFS-like se-
cured file system. SFS clients communicate with the server
using persistent TCP connections. As all communications
are encrypted and authenticated, SFS is CPU-intensive. Our
experiments showed that the SFS server spends more than 60%
of its time performing cryptographic operations, confirming
previous results [11].

We used the coloring scheme described in Libasync-
smp [11] where only the CPU-intensive handlers are colored.
We performed load injection using 16 client nodes connected
to the server through a Gigabit Ethernet switch. Since SFS
only supports a single network interface, we use interface
bonding [20] in order to exploit all the available Ethernet
ports on the server. Each machine runs a single client that
sends requests using the SFS protocol. We use the multio
benchmark [21] configured as follows: each client reads a
200MB file. Note that similarly to the benchmark described by

Zeldovich et al. [11], the content of the requested file remains
in the server’s disk buffer cache. Moreover, each client flushes
its cache before sending a file request in order to ensure that
the request will be sent to the SFS server. Each client computes
the throughput at which it reads the file. A master is in charge
of collecting the values computed by all the clients.

 0

 20

 40

 60

 80

 100

 120

 140

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

Libasync-smp
Libasync-smp - WS

Mely - WS

Figure 8. Performance of SFS.

The average throughput is depicted in Figure 8. We evaluate
Libasync-smp without workstealing, Libasync-smp with work-
stealing enabled, and Mely with our improved workstealing
algorithm (with all heuristics enabled). As mentioned in Sec-
tion II, we notice that the legacy Libasync-smp workstealing
significantly improves the performance of the SFS server
(around 35%). Finally, we observe that Mely’s improved work-
stealing performs similarly to the Libasync-smp workstealing.
As expected (see Section II), Mely’s workstealing algorithm
does not degrade the performance on applications for which
the Libasync-smp workstealing is efficient.

VI. RELATED WORK

Similarly to the initial publication about Libasync-smp [11],
this paper is not aimed at reviving the debate on the relative
merits of the thread-based and event-driven models [22], [9],
[23], [6], [24], [25], nor on proposing new ways to deal with
concurrency and state management issues [22], [26], [10],
[27], but focuses instead on improving the performance of
existing event-driven software on multicore platforms.

In addition to event-coloring, two other techniques have
been used for running event-driven code on parallel hard-
ware. The first one, named N-copy, consists in running sev-
eral independent instances of the same application. While
straightforward, such a configuration may reduce efficiency
and does not work if the different instances must share mutable
state [11]. The second option is based on a hybrid, stage-based
architecture, combining threads and events: an application is
structured as a set of stages interacting via events. Inside a
stage, events are executed by a pool of threads [28], [29].
This solution does not suffer from the issues of the N-copy
approach but exposes the complexity of preemptive thread-
based concurrency to the programmer.

The multiprocessor performance of runtime systems based
on structured event queues has been studied, yet with different
assumptions regarding the exposed programming model [29]
or the application domain and the granularity of tasks [30].
In SEDA, task dispatching decisions are offloaded to the OS
thread scheduler and, as far as we know, this aspect has not
been studied in details. Due to specific design constraints men-
tioned by its authors, SMP Click cannot rely on workstealing
for adaptive load balancing and uses another custom technique.
The applicability of the latter approach to Libasync-smp is
limited by the fact that they do not implement the same form
of parallelism.

Jannotti et al. [31] have improved and partially automated
the specification of mutual exclusion constraints with the
event-coloration technique, in order to allow more parallelism.
This work is complementary to ours since it is an enhancement
of the programming model, for which we present an efficient
execution runtime. However, to the best of our knowledge,
their proposal has not been fully implemented nor evaluated.

Previous research on uniprocessor event-driven Web servers
has demonstrated the benefits of careful event scheduling poli-
cies. First, Brecht et al. [32] have shown that tuning the batch
scheduling factor of connection-accepting handlers could yield
important throughput improvements. Second, Bhatia et al. [33]
have highlighted the improved cache behavior provided by
interactions between the event scheduler and the memory
allocator. We are currently considering how such optimizations
can be fruitfully combined with the mechanisms introduced in
this paper.

Our context (event-coloring runtimes) brings constraints that
are usually not taken into account by the previous studies
on workstealing [34], [35] in runtimes like Cilk [36]. These
constraints apply to both the runtime data structures and the
stolen tasks selection. In particular, we cannot benefit from the
use of efficient DEqueues employed in many workstealing-
enabled systems [14], [37]. Besides, due to the very small
granularity of most tasks in our context, the workstealing costs
have a much stronger impact.

McRT [38], the Intel manycore runtime, can also use
workstealing for load balancing cooperatively scheduled tasks.
However, to the best of our knowledge, it differs from our con-
tribution in several ways. First, it relies on other concurrency
control mechanisms such a software transactional memories,
which frees the scheduler from the kind of constraint induced
by event-coloring. Second, it targets future, very large scale
architectures (up to 128 cores, each with multiple hardware
threads) using a simulator and thus adopts different tradeoffs
(for instance, stealing attempts are restricted to neighbor
cores). In contrast, we run our experiments on currently
available medium scale hardware. Finally, its evaluation was
focused on desktop rather than server applications.

VII. CONCLUSION

Event-driven programming is a popular paradigm that has
proven well-adapted to the design of networked applications.
The event-coloring approach allows such systems to leverage

the pervasive hardware parallelism provided by multicore
architectures. We study the workstealing mechanism used
by Libasync-smp for balancing event processing on cores
and show that it can degrade the performance of certain
applications such as Web servers.

To overcome these performance issues, we introduce a novel
runtime, Mely, which is backward-compatible with Libasync-
smp. Mely features an internal architecture aimed at minimiz-
ing the cost of workstealing and relies on heuristics to improve
the efficiency of stealing decisions. These optimizations can
be mostly transparent for application programmers and yield
significant performance improvements (up to +73% compared
to Libasync-smp with workstealing and +25% compared to
Libasync-smp without workstealing). In the worst case, Mely’s
workstealing does not degrade performance. While our exper-
imental work has focused on the context of Libasync-smp, we
believe that our contributions are more general and could be
easily applicable to other event-driven runtimes, should they
be made multiprocessor-compliant.

As future work, we plan to study techniques to dynamically
set time-left annotations and workstealing penalties based on
automated monitoring of the running time and memory usage
of each handler.

ACKNOWLEDGMENTS

This work was partially funded by the OMP European
project (FP7-ICT-214009) and the Aravis (Minalogic compet-
itive cluster) project.

REFERENCES

[1] “The µserver project,” 2007, http://userver.uwaterloo.ca.
[2] Acme Labs, “thttpd: Tiny/turbo/throttling http server,” http://www.acme.

com/software/thttpd/.
[3] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-

area cooperative storage with cfs,” in SOSP, 2001.
[4] M. J. Freedman, E. Freudenthal, and D. Mazières, “Democratizing

Content Publication with Coral,” in NSDI, 2004.
[5] M. Krohn, “Building Secure High-Performance Web Services with

OKWS,” in USENIX ATC, 2004.
[6] V. S. Pai, P. Druschel, and W. Zwaenepoel, “Flash: An efficient and

portable Web server,” in USENIX ATC, 1999.
[7] J. Stribling, J. Li, I. G. Councill, M. F. Kaashoek, and R. Morris,

“OverCite: A Distributed, Cooperative CiteSeer,” in NSDI, May 2006.
[8] Zeus Technology, “Zeus Web Server,” http://www.zeus.com/products/

zws/.
[9] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and R. Morris,

“Event-Driven Programming for Robust Software,” in ACM SIGOPS
European Workshop, 2002.

[10] M. Krohn, E. Kohler, and M. F. Kaashoek, “Events Can Make Sense,”
in USENIX ATC, 2007.

[11] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazières, and M. F.
Kaashoek, “Multiprocessor Support for Event-Driven Programs,” in
USENIX ATC, 2003.

[12] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel, “Separating
Key Management From File System Security,” in SOSP, 1999.

[13] S. B. Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, “Corey:
An Operating System for Many Cores,” in OSDI, 2008.

[14] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in SPAA,
2005.

[15] S. Ghemawat and P. Menage, “TCMalloc : Thread-Caching Malloc,”
http://goog-perftools.sourceforge.net/doc/tcmalloc.html.

[16] D. Kegel, “The c10k problem,” 2006, http://www.kegel.com/c10k.html.
[17] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open Versus

Closed: a Cautionary Tale,” in NSDI, 2006.

[18] G. Banga and P. Druschel, “Measuring the Capacity of a Web Server,”
in USITS, 1997.

[19] “The Apache HTTP server project,” http://httpd.apache.org.
[20] The Linux Foundation, “Bonding multiple devices,” http://www.

linuxfoundation.org/collaborate/workgroups/networking/bonding.
[21] “The multio benchmark,” 2004, http://www.cisl.ucar.edu/css/software/

multio/.
[22] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,

“Cooperative Task Management Without Manual Stack Management,”
in USENIX ATC, 2002.

[23] J. K. Ousterhout, “Why threads are a bad idea (for most purposes),”
Presentation given at the USENIX ATC, 1996.

[24] R. von Behren, J. Condit, and E. A. Brewer, “Why events are a bad idea
(for high-concurrency servers),” in HOTOS, 2003.

[25] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and E. Brewer,
“Capriccio: Scalable threads for internet services,” in SOSP, 2003.

[26] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D. Corner,
“Flux: A Language for Programming High-Performance Servers,” in
USENIX ATC, 2006.

[27] G. Upadhyaya, V. S. Pai, and S. P. Midkiff, “Expressing and Exploiting
Concurrency in Networked Applications with Aspen,” in PPoPP, 2007.

[28] J. R. Larus and M. Parkes, “Using Cohort Scheduling to Enhance Server
Performance,” in USENIX ATC, 2002.

[29] M. Welsh, D. Culler, and E. Brewer, “SEDA: An architecture for well-
conditioned scalable internet services,” in SOSP, 2001.

[30] B. Chen and R. Morris, “Flexible Control of Parallelism in a Multipro-
cessor PC Router,” in USENIX ATC, 2001.

[31] J. Jannotti and K. Pamnany, “Safe at Any Speed: Fast, Safe Parallelism
in Servers,” in HotDep, 2006.

[32] T. Brecht, D. Pariag, and L. Gammo, “Acceptable Strategies for Improv-
ing Web Server Performance,” in USENIX ATC, 2004.

[33] S. Bhatia, C. Consel, and J. L. Lawall, “Memory-Manager/Scheduler Co-
Design: Optimizing Event-Driven Servers to Improve Cache Behavior,”
in ISMM, 2006.

[34] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748, 1999.

[35] F. W. Burton and M. R. Sleep, “Executing functional programs on a
virtual tree of processors,” in FPCA, 1981.

[36] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” J. Parallel Distrib. Comput., vol. 37, no. 1, pp. 55–69, 1996.

[37] M. Herlihy and N. Shavit, “Chapter 16: Futures, Scheduling and Work
Distribution,” in The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008, pp. 369–396.

[38] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Rajagopalan, R. L.
Hudson, L. Petersen, V. Menon, B. Murphy, T. Shpeisman, E. Sprangle,
A. Rohillah, D. Carmean, and J. Fang, “Enabling Scalability and
Performance in a Large Scale CMP Environment,” in EuroSys, 2007.

