
Large	 Pages	 May	 Be	 Harmful	 on	
NUMA	 Systems	

Fabien	 Gaud	
Simon	 Fraser	 University	

Bap?ste	 Lepers	
CNRS	

Jeremie	 Decouchant	
Grenoble	 University	

Jus?n	 Funston	
Simon	 Fraser	 University	

Alexandra	 Fedorova	
Simon	 Fraser	 University	

Vivien	 Quéma	
Grenoble	 INP	

2

Virtual-‐to-‐physical	 transla?on	 is	 done	
by	 the	 TLB	 and	 page	 table	 	 	

Virtual address TLB Physical address

Page table

TLB hit

TLB miss

Typical TLB size: 1024 entries (AMD Bulldozer), 512 entries (Intel i7).

3

Virtual-‐to-‐physical	 transla?on	 is	 done	
by	 the	 TLB	 and	 page	 table	 	 	

Virtual address TLB Physical address

Page table

TLB hit

TLB miss

Typical TLB size: 1024 entries (AMD Bulldozer), 512 entries (Intel i7).

43 cycles

4

To	 reduce	 the	 number	 of	 TLB	 misses,	
developers	 can	 use	 “large	 pages”	 	

Page size 512 entries coverage 1024 entries coverage

4KB (default) 2MB 4MB

2MB 1GB 2GB

1GB 512GB 1024GB

In Linux:
-  Manually: mmap(…, flags | MAP_HUGETLB)
-  Automatically: using Transparent Huge Pages (THP). THP uses 2MB

pages for anonymous memory and clusters groups of 4K pages
periodically.

5

Large	 pages	 known	 advantages	 &	
downsides	

Known advantages:
•  Fewer TLB misses
•  Fewer page allocations (reduces contention in the kernel memory

manager)

Known downsides:
•  Increased memory footprint
•  Memory fragmentation

6

New	 observa?on:	 large	 pages	 may	 hurt	
performance	 on	 NUMA	 machines	

-30
-20
-10

 0
 10
 20
 30

BT.B
CG.D

DC.A
EP.C

FT.C
IS.D

LU.B
MG.D

SP.B
UA.B

UA.C
WC WR Kmeans

MatrixMultiply

pca
wrmem

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

ve
m

e
n
t
re

la
tiv

e
to

 d
e
fa

u
lt

L
in

u
x

(%
)

THP

-30
-20
-10

 0
 10
 20
 30

BT.B
CG.D

DC.A
EP.C

FT.C
IS.D

LU.B
MG.D

SP.B
UA.B

UA.C
WC WR Kmeans

MatrixMultiply

pca
wrmem

SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

ve
m

e
n
t
re

la
tiv

e
to

 d
e
fa

u
lt

L
in

u
x

(%
)

THP-43

109 70 51

Machine A, 24 cores

Machine B, 64 cores

Machines	 are	 NUMA	

8GB/s 160 cycles 3GB/s 300 cycles
Node 1

Node 2 Node 3

Memory Memory

Memory Memory

CPU0 CPU1

CPU2 CPU3

7

Remote memory accesses hurt performance

Machines	 are	 NUMA	

1200 cycles !
Node 1

Node 2 Node 3

Memory Memory

Memory Memory

CPU0 CPU1

CPU2 CPU3

8

Contention hurts performance even more.

Large	 pages	 on	 NUMA	 machines	 (1/2)	

Node 1

Node 2 Node 3

9

Node 0

void *a = malloc(2MB);

With 4K pages, load is balanced.

Large	 pages	 on	 NUMA	 machines	 (1/2)	

Node 1

Node 2 Node 3

10

Node 0

void *a = malloc(2MB);

With 2M pages, data are allocated on 1 node => contention.

Large	 pages	 on	 NUMA	 machines	 (1/2)	

Node 1

Node 2 Node 3

11

Node 0

void *a = malloc(2MB);

With 2M pages, data are allocated on 1 node => contention.

HOT PAGE

Performance	 example	 (1/2)	

App. Perf.
increase
THP/4K

(%)

% of time
spent in

TLB miss
4K

% of time
spent in

TLB miss
2M

Imbalance
4K (%)

Imbalance
2M (%)

CG.D -43 0 0 1 59
SSCA.20 17 15 2 8 52
SpecJBB -6 7 0 16 39

Using large pages, 1 node is overloaded in CG, SSCA and SpecJBB.
Only SSCA benefits from the reduction of TLB misses.

12

Large	 pages	 on	 NUMA	 machines	 (2/2)	

Node 1

Node 2 Node 3

13

Node 0

void *a = malloc(1.5MB); // node 0
void *b = malloc(1.5MB); // node 1 PAGE-LEVEL

FALSE SHARING

Page-level false sharing reduces the maximum achievable locality.

Performance	 example	 (2/2)	

App. Perf.
increase
THP/4K

(%)

Local
Access
Ratio 4K

(%)

Local
Access

Ratio 2M
(%)

UA.C -15 88 66

The locality decreases when using large pages.

14

Can	 exis?ng	 memory	 management	
algorithms	 solve	 the	 problem?	

15

Exis?ng	 memory	 management	
algorithms	 do	 not	 solve	 the	 problem	

We run the application with Carrefour[1], the state-of-the-art memory
management algorithm. Carrefour monitors memory accesses and places

pages to minimize imbalance and maximize locality.

[1] DASHTI M., FEDOROVA A., FUNSTON J., GAUD F.,LACHAIZE R., LEPERS B., QUEMA V.,
AND ROTH M. Traffic management: A holistic approach to memory placement on NUMA systems.
ASPLOS 2013.

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

MatrixMultiply

wrmem
SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

ve
m

e
n
t
re

la
tiv

e
to

 d
e
fa

u
lt

L
in

u
x

(%
)

THP
Carrefour-2M

Carrefour solves imbalance / locality issues on some applications

But does not improve performance on some other applications
(hot pages or page-level false sharing)

16

We	 need	 a	 new	 memory	 management	
algorithm	

17

Our	 solu?on	 –	 Carrefour-‐LP	
•  Built on top of Carrefour.
•  By default, 2M pages are activated.
•  Two components that run every second:

Reactive component Conservative component
Splits 2M pages

Detects and removes “hot
pages” and page-level
“false sharing”.

Deactivate 2M page
allocation

Promotes 4K pages
When the t ime spen t
handling TLB misses is
high.

Forces 2M page allocation
In case of contention in the
page fault handler.

•  We show in the paper that the two components are required.

18

Implementa?on	
Reactive component (splits 2M pages)

Sample memory accesses using IBS

A page
represents more

than 5% of all
accesses and is
accessed from
multiple nodes?

Split and interleave the hot page YES

19

Implementa?on	
Reactive component (splits 2M pages)

Sample memory accesses using IBS

•  Compute observed local access ratio (LAR1)
•  Compute the LAR that would have been obtained if each page was

placed on the node that accessed it the most.

LAR1 can be
significantly
 improved?

Run carrefour YES

•  Compute the LAR that would have been obtained if each page was
split and then placed on the node that accessed it the most.

LAR1 can be
significantly
 improved?

Split all 2M pages and run carrefour YES

NO

20

Implementa?on	 challenges	
Reactive component (splits 2M pages)

Sample memory accesses using IBS

•  Compute observed local access ratio (LAR1)
•  Compute the LAR that would have been obtained if each page was

placed on the node that accessed it the most (without splitting).

LAR1 can be
significantly
 improved?

Run carrefour YES

•  Compute the LAR that would have been obtained if each page was
split and then placed on the node that accessed it the most.

LAR1 can be
significantly
 improved?

Split all 2M pages and run carrefour YES

NO

COSTLY

COSTLY

IMPRECISE

21

Implementa?on	 challenges	
Reactive component (splits 2M pages)

•  We only have few IBS samples.

•  The LAR with “2M pages split into 4K pages” can be wrong.

•  We try to be conservative by running Carrefour first and only splitting
pages when necessary (splitting pages is expensive).

•  Predicting that splitting a 2M page will increase TLB miss rate is hard. This
is why the conservative component is required.

22

Implementa?on	
Conservative component

Monitor time spent in TLB miss (hardware counters)

> 5% Cluster 4K pages and force 2M pages allocation YES

Monitor time spent in page fault handler (kernel statistics)

> 5% Force 2M pages allocation YES

23

Evalua?on	

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

MatrixMultiply

wrmem
SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

ve
m

e
n
t
re

la
tiv

e
to

 d
e
fa

u
lt

L
in

u
x

(%
)

Carrefour-2M
 Conservative

Reactive
Carrefour-LP

-30
-20
-10

 0
 10
 20
 30

CG.D
LU.B

UA.B
UA.C

MatrixMultiply

wrmem
SSCA.20

SPECjbb

P
e
rf

.
im

p
ro

ve
m

e
n
t
re

la
tiv

e
to

 d
e
fa

u
lt

L
in

u
x

(%
)

Carrefour-2M
Conservative

Reactive
Carrefour-LP-40

46
32

45
46

The reactive and conservative components work together.
Machine A, 24 cores

Machine B, 64 cores

24

Evalua?on	
•  On the selected set of applications, our solution performs up to:

•  46% better than Linux
•  50% better than THP.

 (The full set of applications is available in the paper.)

•  Overhead:
•  Less than 3% CPU overhead.

25

Conclusion	

•  Large pages can hurt performance on NUMA systems.

•  We identified two new issues when using large pages on NUMA systems:
“hot pages” and “page-level false sharing”.

•  We designed a new algorithm, Carrefour-LP, that:
•  Splits large pages when they hurt performance.
•  Promotes 4K pages and uses 2M page allocation when beneficial.

•  Carrefour-LP restores the performance when it was lost due to large
pages and makes their benefits accessible to applications.

26

Ques?ons?	

28

Performance	 example	
App. Perf.

increas
e THP/

4K

Time
spent

in page
fault

handler
4K

Time
spent

in page
fault

handler
2M

Local
acces

s
ratio
4K
(%)

Local
Access
ratio 2M

(%)

Imbalan
ce 4K

(%)

Imbalan
ce 2M

(%)

CG.D -43 2200ms
(0.1%)

450ms
(0.1%)

40 36 1 59

UA.C -15 100ms
(0.2%)

50ms
(0.1%)

88 66 14 12

WR 109 8700ms
(38%)

3700ms
(32%)

50 55 147 136

SSCA.
20

17 90ms
(0%)

150ms
(0%)

25 26 8 52

SpecJB
B

-6 8400ms
(2%)

5900ms
(1.5%)

12 15 16 39

