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M
odern server-class systems are typically built 
as several multicore chips put together in a 
single system. Each chip has a local DRAM 
(dynamic random-access memory) module; 
together they are referred to as a node. Nodes 

are connected via a high-speed interconnect, and the system 
is fully coherent. This means that, transparently to the 
programmer, a core can issue requests to its node’s local 
memory as well as to the memories of other nodes. The key 
distinction is that remote requests will take longer, because 
they are subject to longer wire delays and may have to jump 
several hops as they traverse the interconnect. The latency 
of memory-access times is hence non-uniform, because it 
depends on where the request originates and where it is 
destined to go. Such systems are referred to as NUMA (non-
uniform memory access). 

Systems with NUMA characteristics were built as 
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early as the 1980s, and along with the hardware operating 
system, support for NUMA has evolved. Modern NUMA 
systems are quite different from the old ones, so we must 
revisit our assumptions about them and rethink how to build 
NUMA-aware operating systems. This article evaluates 
performance characteristics of a representative modern 
NUMA system, describes NUMA-specific features in Linux, 
and presents a memory-management algorithm that 
delivers substantially reduced memory-access times and 
better performance. 

A MODERN NUMA SYSTEM
NUMA systems consist of several nodes, each containing a 
subset of the system’s CPU cores and a portion of its RAM. 
If a core accesses memory from within the same node, it is 
called a local access. Similarly, an access to a different node 
is called a remote access. Remote accesses have longer 
latencies than local ones, because they must traverse one or 
more interconnect links, communication pathways between 
nodes that also service cache-coherency traffic. Figure 1 is a 
diagram of a typical NUMA system with four nodes and four 
cores per node. At the time of this writing, NUMA systems 
are built with up to eight nodes and ten cores per node.

Current x86 NUMA systems are cache coherent (called 
ccNUMA), which means that programs can transparently 
access memory on local and remote nodes without changes 
to the code or special operating-system support. This 
allows easy migration to NUMA systems, but it doesn’t 
address important performance considerations. A naive 
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implementation—for example, a program that allocates all 
of its memory on a single node—can easily cause excessive 
remote accesses or the overloading of a memory controller. 

New vs. old NUMA systems

Avoiding performance pitfalls on NUMA systems requires 
considering how the nodes are connected, where the 
program’s memory is placed, and how it accesses that 
memory. Previous NUMA-aware operating systems focused 
on locality, attempting to minimize the number of remote 
accesses at all costs in order to avoid the performance 
penalty. Modern NUMA systems, however, have a strikingly 
different latency profile compared with the older ones. A 
remote access takes approximately 30 percent longer than a 

C1 C2

C3 C4
L3 cache

memory node 1

no
de

 1
no

de
 3

no
de

 2
no

de
 4

C5 C6

C7 C8
L3 cache

memory node 2

C9 C10

C11 C12
L3 cache

memory node 3

C13 C14

C15 C16
L3 cache

memory node 4

1
FIGURE 1: A modern NUMA system

3 of 26memory



acmqueue | september-october 2015   102

local one,2,7 while on older hardware, it could take up to seven 
times longer.3 The remote-access penalty is substantially 
reduced on modern NUMA systems. 

On the other hand, current CPUs can generate an 
immense load on the memory subsystem, causing congestion 
on memory controllers and interconnect links (if requests 
are remote). If multiple cores are heavily accessing a single 
node, memory latencies can be as long as 1,200 cycles (!) 
due to congestion, while normal latencies are only around 
300 cycles. Avoiding memory-controller and interconnect 
congestion therefore becomes the key concern on modern 
NUMA systems. The following section examines the effects 
of congestion on performance. 

NUMA PERFORMANCE—LOCALITY AND CONGESTION
Benchmarks can provide a complete picture of the 
performance characteristics of NUMA systems. The NAS 
(Numerical Aerodynamic Simulation),1 PARSEC (Princeton 
Application Repository for Shared-Memory Computers),10 
and Metis MapReduce9 suites were chosen here because 
they have a CPU utilization greater than 30 percent, allowing 
the focus to be on NUMA effects and not other factors such 
as disk I/O or blocking synchronization. The experiments 
were conducted on an AMD server with four quad-core 
CPUs, as described in a later section.

The first experiment quantified the effect of only the 
remote-access penalty, without the presence of memory-
subsystem congestion. To do this, the benchmarks were 
run with only a single thread, limiting the pressure on the 
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memory controllers and interconnects, and then compared 
under two different memory configurations: local and 
remote. In the local memory configuration, applications 
were executed with their memory and thread on the same 
node. In the remote-memory configuration, standard Linux 
tools were used to force the application thread to run on a 
different node from its memory. Therefore, in the remote-
memory case all memory accesses were remote, and in the 
local-memory case all memory accesses were local. 

Figure 2a shows performance differences between 
local and remote memory configurations for the single-
threaded versions of applications used in this experiment. 
Performance never degraded by more than 20 percent, even 
when all memory requests were remote. 

Although the remote-access penalty is worth minimizing 
when possible, that is not the whole story of NUMA 
performance effects. To demonstrate this, the benchmarks 
were run using multiple threads, with one thread per core 
and under two different common NUMA memory-allocation 
policies: first-touch and interleave. Linux’s default policy is 
first-touch, where memory is allocated on the same node 
as the thread that first accesses a memory page. The first-
touch policy is meant to maximize local accesses over 
remote accesses, but of course it cannot guarantee local 
accesses because data can be shared by threads on multiple 
nodes. On the other hand, the interleave policy distributes 
memory allocations equally on all nodes regardless of 
which threads access it. Interleaving ensures that memory 
allocations are balanced but not necessarily that memory 
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accesses will be balanced. Both policies work at the 
granularity of a page (typically 4 KB). 

Figure 2b shows the absolute performance difference 
between first-touch (F) and interleave (I) for multithreaded 
versions of applications. The applications are labeled (F) or 
(I) depending on which policy performed best. The figure 
compares the two policies by showing the performance 
difference between the best and worst policy for each 
benchmark. If there was no negligible difference, the 
application is labeled (-). The first observation to make is that 
no one policy is best for all applications. Several applications 
perform best with the first-touch policy, but many prefer 
interleaving. The second observation is that NUMA effects 
beyond the remote-access penalty can indeed severely 
affect performance. For the Streamcluster benchmark, using 
the first-touch policy nearly doubled the running time over 
the interleave policy. 

We further investigated the NUMA performance 
characteristics of Streamcluster and PCA (another 
benchmark that has significant performance loss with the 
first-touch policy) by using hardware performance counters 
to gather the following key metrics: 

3 Local access ratio. The portion of RAM accesses that 
result in a local access.

3 Memory latency. The number of cycles it takes to 
perform a RAM access, on average. Higher latencies mean 
that the CPU must stall for longer on a last-level cache miss, 
which will negatively affect performance.

3 Memory-controller imbalance. The standard deviation 
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(as a percentage of the mean) of the load on the memory 
controllers, where the load is measured as the number of 
requests per time unit. Along with interconnect imbalance, it 
is a sign of congestion.

3 Average interconnect usage. The average bandwidth 
utilization of the interconnect links. A low interconnect 
usage could imply that either the application is not very 
memory intensive, or that there is imbalance because some 
links are left underutilized.

3 Average interconnect imbalance. The standard 
deviation (as a percentage of the mean) of the bandwidth 
utilization of interconnect links.

3 L3MPKI. The number of last-level cache misses per 
1,000 instructions. This is a relative indicator of how much 
pressure an application puts on the memory subsystem and 
of how sensitive an application is to memory latencies.

3 IPC (instructions per cycle). For the same application 
and workload, a higher IPC means better performance.

The metrics for Streamcluster and PCA are reported 
in table 1. Traffic congestion effects are highlighted by 
differences in key NUMA metrics for each benchmark 
under the first-touch (F) and interleave (I) policies. The 
performance difference between the two NUMA policies 
cannot be explained by a change in the last-level cache miss 
rate, which stays the same. Nor can it be explained by the 
local-access ratio, which stays the same for Streamcluster 
and in fact is worse for PCA in the case of the better-
performing interleave policy. The local-access ratio of PCA 
drops from 33 percent to 25 percent when interleaving 

8 of 26memory



acmqueue | september-october 2015   107

memory, but performance improves significantly, so the 
conclusion is that better locality does not necessarily 
improve performance. 

When using the first-touch policy both applications show 
signs of congestion with high last-level cache miss rates, 
memory-controller imbalance, and interconnect imbalance. 
The congestion results in high memory latencies. In the 
case of Streamcluster, the average memory latency with 
the first-touch policy is more than double the latency of 
the interleave policy. Interleaving balances the memory 
among the nodes, which reduces traffic hotspots and 
congestion, and therefore improves memory latency and 
overall performance. A visualization of the memory traffic 
and congestion of Streamcluster is shown in figure 3; 
traffic imbalance under first-touch is shown on the top and 
interleaving on the bottom. Nodes and links bearing the 
majority of the traffic are shown proportionately larger in 
size and in brighter colors. The percentage values show the 
fraction of memory requests destined for each node.

Streamcluster PCA

Best (I) Worst (F) Best (I) Worst (F)

Local-access ratio 25% 25% 25% 33%

Memory latency 476 1197 465 660

Mem-ctrl. imbalance 8% 170% 5% 130%

IC: imbalance 22% 85% 20% 68%

IC: usage 59% 33% 48% 31%

L3MPKI 16.85 16.89 7.35 7.4

IPC 0.29 0.15 0.52 0.36

TABLE 1: Traffic congestion effects
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NUMA MEMORY PLACEMENT STRATEGIES
The results in figure 2 and table 1 motivate a NUMA 
memory-management algorithm that places importance 
on congestion management, rather than focusing solely on 
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reducing remote accesses. That is not to say that reducing 
remote accesses is not important (they do, after all, add 
latency and contribute to interconnect congestion), but this 
should not be the only goal. Managing congestion effectively 
means being concerned with how the memory-access traffic 
is spread across the system. It is not enough simply to use 
interleaving. Many applications do not suffer from imbalance, 
so they would needlessly incur remote-access delays (e.g., 
the benchmarks in figure 2b that prefer the first-touch 
policy). The algorithm must be able to intelligently place 
memory based on the application’s access patterns, such 
that congestion is reduced whenever possible but locality 
isn’t sacrificed when congestion is minimal. Since access 
patterns aren’t known a priori, the algorithm must also be 
able to determine the access patterns and move memory at 
runtime with low overhead.

In a later section we present our NUMA algorithm, 
called Carrefour, which takes all of these considerations 
into account. First, though, the next two sections describe 
existing NUMA tools available on Linux. (This article gives 
an overview of the Carrefour algorithm. Please see Dashti 
et al.6 for a complete discussion, including implementation 
details and exhaustive experimental results.)

NUMA on Linux

Linux allows administrators to set the NUMA policy for 
applications via the numactl utility. The NUMA policies 
available are first-touch, interleave, and restricting 
allocations to specific nodes. As described earlier, first-
touch is the policy of allocating memory on the same node 
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as the CPU that first accesses the memory page, and the 
interleave policy distributes memory pages on nodes in a 
round-robin manner. 

Linux exposes manual NUMA memory-management 
functions to programmers through the libnuma library and 
associated system calls. This allows a program to query 
the NUMA topology, set NUMA policies for specific address 
ranges, and migrate memory pages to different nodes at 
runtime. (See Lameter8 for detailed information on Linux’s 
NUMA facilities.) 

Linux also provides robust support for hardware 
performance counters, which are used for counting CPU 
events such as cycles elapsed, instructions retired, branch 
mispredictions, or cache misses. These events can be 
used to calculate the important NUMA metrics listed 
previously. Perf is the standard Linux tool for using hardware 
performance counters to profile applications. It can gather 
data for several events with negligible performance 
overhead and minimal developer effort. 

Hardware instruction sampling is an advanced CPU 
feature similar to performance counters. With instruction 
sampling, a proportion of instructions are tagged by the 
hardware. Tagged instructions will record extra information 
about their execution. It is necessary for obtaining some 
NUMA-related statistics, including memory-access latency 
and the addresses of memory accesses. The feature is 
implemented as IBS (instruction-based sampling) on AMD 
CPUs and as PEBS (precision event-based sampling) on Intel 
CPUs. Unfortunately, Linux support for hardware-instruction 
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sampling is limited and requires a custom kernel module for 
most uses. 

AutoNUMA

AutoNUMA4 aims to provide Linux with a more proactive 
NUMA solution. A kernel task routinely iterates through the 
allocated memory of each process and tallies the number of 
memory pages on each node for that process. It also clears 
the present bit on the pages, which will force the CPU to 
stop and enter the page-fault handler when the page is next 
accessed. 

In the page-fault handler it records which node and thread 
is trying to access the page before setting the present bit 
and allowing execution to continue. Pages that are accessed 
from remote nodes are put into a queue to be migrated to 
that node. After a page has already been migrated once, 
though, future migrations require two recorded accesses 
from a remote node, which is designed to prevent excessive 
migrations (known as page bouncing). 

AutoNUMA’s memory-placement algorithm, now known 
as Automatic NUMA Balancing, has been merged into the 
Linux kernel. It can be enabled through the sysctl interface 
by setting kernel.numa_balancing to 1. 

AutoNUMA also uses thread placement to try to improve 
locality. The scheduler will consider migrating or swapping 
threads if it will cause more of the thread accesses to be 
local (based on the gathered page-fault statistics) but not at 
the cost of introducing load imbalance among CPUs. 
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Carrefour

Carrefour is a memory-placement algorithm for NUMA 
systems that focuses on traffic management: placing 
memory so as to minimize congestion on interconnect links 
or memory controllers. 

Carrefour uses global information and memory-usage 
statistics to inform three primary techniques for limiting 
congestion: 

3 Memory collocation. Moving memory to a different 
node so that accesses will likely be local. 
3 Replication. Copying memory to several nodes so that 

threads from each node can access it locally (useful for read-
only and read-mostly data). 

3 Interleaving. Moving memory such that it is distributed 
evenly among all nodes. 

All three of these techniques have been analyzed 
individually in prior studies, but Carrefour combines them 
into a novel algorithm that is effective for modern NUMA 
systems. 

To combine these techniques and apply them judiciously, 
Carrefour collects per-page, per-process, and global 
statistics from hardware performance counters. Carrefour 
also uses hardware-instruction sampling to log which 
threads and nodes access which memory pages. Instruction 
sampling lets Carrefour gather many more samples at low 
overhead than AutoNUMA’s page-fault handler technique 
because it has lower overhead per sample. 

The first metric Carrefour uses is the number of RAM 
accesses per microsecond. If it is less than the threshold 
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(50 in our experiments), then the rest of the algorithm 
is completely disabled until it becomes greater than the 
threshold. If the rate of RAM accesses is low, then the 
application is unlikely to benefit from better memory 
placement, so this rule prevents the overhead of Carrefour 
when it isn’t needed. If the algorithm does remain enabled, 
then Carrefour iterates over the memory pages for which 
it has gathered statistics and applies the replication, 
collocation, and interleaving techniques. 

We implemented memory replication in the Linux 
kernel with a patch to the virtual memory layer, and 
our implementation is able to automatically maintain 
consistency when there is a write to a replicated page. 
To enable replication there must be enough free memory 
available, and at least 95 percent of the application’s 
memory accesses must be reads because the performance 
cost of a write to a replicated page is quite high. The rule for 
replicating particular pages is simple: pages are replicated 
if they are observed to have accesses from multiple nodes 
in read-only mode. Replication improves both locality and 
congestion because a replicated page can be accessed 
locally from more than one node. 

Collocation is enabled if the local access ratio is less than 
80 percent. Pages that have been accessed only by a single 
remote node are migrated to that node, thereby improving 
locality. 

The primary purpose of interleaving is to alleviate 
congestion by distributing memory—and, therefore, memory 
accesses—among multiple nodes. The first step is to consider 
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the memory-controller imbalance. If it is below 35 percent, 
then interleaving is deemed unprofitable and it is disabled 
globally. Otherwise, pages that have recorded read and 
write accesses from more than one node are migrated to a 
random node, where the probability of being migrated to a 
specific node is inversely proportional to the relative load on 
that node’s memory controller. 

The source code for Carrefour is available at https://
github.com/Carrefour. 

EVALUATION
Testbed

All experiments were conducted on an AMD system with 64 
GB of RAM and four quad-core Opteron 8385 processors 
running at 2.3 GHz. It is divided into four NUMA nodes with 
four cores and 16 GB of RAM per node (the topology is shown 
in figure 1) interconnected with HyperTransport 1.0 links.

The operating system was Linux kernel v3.6, and the 
AutoNUMA configuration used v27 of the patch.

A variety of multithreaded benchmarks were used for the 
evaluation: PARSEC benchmark suite v2.1,10 FaceRec v5.0,5 
Metis MapReduce benchmark suite,9 and the NAS parallel 
benchmark suite v3.3.1 The PARSEC benchmarks used the 
“native” workloads, and the NAS benchmarks used problem 
sizes that provided running times of at least 10 seconds. 
Applications that had CPU utilizations below 33 percent 
were excluded because they are not affected by memory-
management policies. Each configuration and benchmark 
was run 10 times, which resulted in standard deviations of 
less than 2 percent for the Carrefour, default Linux, and 
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interleaving configurations. AutoNUMA gave standard 
deviations of up to 9 percent. 

Performance

We evaluated Carrefour’s performance against Linux’s 
default policy (first-touch), manually interleaving memory 
using Linux’s interleave policy, and the AutoNUMA patch. 
Figures 4 and 5 show the performance improvement relative 
to default Linux.

There are three general classes of applications. First are 
those that have the same performance no matter which 
NUMA technique is used (e.g., Bodytrack and Swaptions). 
These applications are not memory intensive and tend to 
have a low last-level cache miss rate. They also don’t suffer 
much overhead from Carrefour or AutoNUMA, because most 
of the overhead is proportional to the memory intensiveness 
of the application. 

The second class of applications is memory intensive, 
but the default first-touch policy works well for them. BT, 
CG, DC, FT, MG, and UA fall into this category. For these 
applications, manual interleaving hurts performance 
because it eliminates the locality benefit of first-touch 
without reducing congestion. On the other hand, Carrefour 
does not cause poor memory placement but only has a small 
overhead. 

The remaining benchmarks suffer from poor memory 
placement under default Linux. AutoNUMA is able to improve 
the performance of some these applications, but for others 
(e.g., FaceRec and PCA) it has only a small impact. Carrefour, 
on the other hand, significantly improves the performance of 
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FIGURE 4:  PARSEC and Metis

FIGURE 5:  NAS Parallel Benchmarks
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these applications, and in two cases Carrefour greatly 
outperforms the second-best technique. It improves the 
performance of FaceRecLong by 120 percent over default 
Linux, where manual interleaving improves performance 
by only 60 percent. Similarly, Carrefour improves the 
performance of Streamcluster by 180 percent, and manual 
interleaving improves it by only 100 percent. 

One exception is IS, which is improved by manual 
interleaving but not by Carrefour. Carrefour’s sampling 
and migration rate cannot keep up with the burst of traffic 
produced by IS, so the memory isn’t balanced in time to 
improve performance. 

We further profiled select applications in order to see how 
Carrefour affects the key imbalance, locality, and latency 
metrics. Figures 6 and 7 present the results. Figure 6 shows 
the load imbalance for selected benchmarks. Lower is better.

In figure 6a Carrefour consistently minimizes the 
imbalance on memory controllers, as does manual 
interleaving. AutoNUMA is sometimes able to reduce the 
imbalance but usually not to the same degree, and in the 
case of FaceRec it makes the imbalance worse than default 
Linux. The imbalance on interconnect links, depicted in figure 
6b, shows similar trends. 

Although manual interleaving is able to reduce imbalance, 
it always does so at the cost of locality. This is made evident 
in figure 7a. Carrefour, on the other hand, always has the 
highest or nearly the highest local memory-access ratio. For 
applications that have good locality under default Linux (MG 
and SP), AutoNUMA retains the good locality but is able to 
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improve the locality of Facesim. 
The effects of imbalance and the local access ratio are 

reflected in the memory-access latency, shown in figure 
7b. As expected, Carrefour produces the lowest (or is tied 
for the lowest) average memory latencies for each profiled 
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application. There is also a strong correlation between the 
average memory latency and a benchmark’s performance. 
For example, Streamcluster and FaceRec have large 
reductions in memory latency with Carrefour, and they show 
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FIGURE 7:  DRAM latency and locality for selected benchmarks
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large performance improvements in figure 4. 
Overall, we can conclude that Carrefour systematically 

fixes NUMA memory-placement issues in nearly all 
situations, is able to greatly outperform other techniques 
in some circumstances, and does not significantly hurt 
performance for any application. 

CONCLUSION
NUMA architecture is for scaling the processor count of 
today’s server-class systems. In the near future, expect 
systems to have even more NUMA nodes and more 
complicated NUMA topologies. The experiments described 
here show that the performance effects of NUMA are 
significant and that the problem is nontrivial, which 
motivates careful study and a comprehensive solution. 

Contrary to previous NUMA studies, our experiments 
found that congestion causes the most serious NUMA 
problems. Congestion happens when the rate of requests to 
memory controllers or the rate of traffic over interconnects 
is too high, which causes excessive delays for memory 
accesses. It can be alleviated by balancing the traffic among 
multiple memory controllers and interconnect links. The 
other factor of NUMA performance is locality, which is what 
previous NUMA algorithms have focused on. Good locality 
means that most of the memory accesses will be to the local 
node and therefore do not pay the latency cost of traversing 
interconnect links. 

As shown earlier, the two NUMA concerns of congestion 
and locality are hard to reconcile, and for any particular 
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application we can’t know the best memory placement 
beforehand. Carrefour uses hardware performance counters 
and hardware sampling to determine an application’s 
memory-access patterns online with low overhead. It 
then uses that knowledge to apply three page-level 
techniques: memory replication, memory interleaving, 
and memory collocation. Each technique serves a specific 
purpose: collocation improves locality, interleaving reduces 
imbalance, and replication does both in situations when 
reads vastly outnumber writes. The novelty of Carrefour is 
in combining these strategies and applying each only when 
appropriate. 

The result is that Carrefour is able to improve 
performance compared with default Linux for many 
applications. For two benchmarks, Streamcluster and 
FaceRecLong, performance is more than doubled by using 
Carrefour. Unlike manual interleaving and AutoNUMA, 
Carrefour never significantly degrades performance by 
making improper page placements. 

As NUMA systems grow and the number of cores issuing 
memory requests increases, NUMA effects will continue 
being a concern. Carrefour demonstrates a collection 
of techniques that effectively reduce these concerns. 
Developers can use the methods and insights gained from 
Carrefour, along with the tools described earlier, to optimize 
their applications for NUMA systems. 
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