
acmqueue | september-october 2015 99

M
odern server-class systems are typically built
as several multicore chips put together in a
single system. Each chip has a local DRAM
(dynamic random-access memory) module;
together they are referred to as a node. Nodes

are connected via a high-speed interconnect, and the system
is fully coherent. This means that, transparently to the
programmer, a core can issue requests to its node’s local
memory as well as to the memories of other nodes. The key
distinction is that remote requests will take longer, because
they are subject to longer wire delays and may have to jump
several hops as they traverse the interconnect. The latency
of memory-access times is hence non-uniform, because it
depends on where the request originates and where it is
destined to go. Such systems are referred to as NUMA (non-
uniform memory access).

Systems with NUMA characteristics were built as

Challenges of
Memory Management
ON MODERN NUMA SYSTEMS

Optimizing
NUMA systems

applications
with Carrefour

FABIEN GAUD, SIMON FRASER UNIVERSITY

BAPTISTE LEPERS, CNRS

JUSTIN FUNSTON, SIMON FRASER UNIVERSITY

MOHAMMAD DASHTI, SIMON FRASER UNIVERSITY

ALEXANDRA FEDOROVA, UNIVERSITY OF BRITISH COLUMBIA

VIVIEN QUÉMA, GRENOBLE INP

RENAUD LACHAIZE, UJF

MARK ROTH, SIMON FRASER UNIVERSITY

1 of 26memory

acmqueue | september-october 2015 100

early as the 1980s, and along with the hardware operating
system, support for NUMA has evolved. Modern NUMA
systems are quite different from the old ones, so we must
revisit our assumptions about them and rethink how to build
NUMA-aware operating systems. This article evaluates
performance characteristics of a representative modern
NUMA system, describes NUMA-specific features in Linux,
and presents a memory-management algorithm that
delivers substantially reduced memory-access times and
better performance.

A MODERN NUMA SYSTEM
NUMA systems consist of several nodes, each containing a
subset of the system’s CPU cores and a portion of its RAM.
If a core accesses memory from within the same node, it is
called a local access. Similarly, an access to a different node
is called a remote access. Remote accesses have longer
latencies than local ones, because they must traverse one or
more interconnect links, communication pathways between
nodes that also service cache-coherency traffic. Figure 1 is a
diagram of a typical NUMA system with four nodes and four
cores per node. At the time of this writing, NUMA systems
are built with up to eight nodes and ten cores per node.

Current x86 NUMA systems are cache coherent (called
ccNUMA), which means that programs can transparently
access memory on local and remote nodes without changes
to the code or special operating-system support. This
allows easy migration to NUMA systems, but it doesn’t
address important performance considerations. A naive

2 of 26memory

acmqueue | september-october 2015 101

implementation—for example, a program that allocates all
of its memory on a single node—can easily cause excessive
remote accesses or the overloading of a memory controller.

New vs. old NUMA systems

Avoiding performance pitfalls on NUMA systems requires
considering how the nodes are connected, where the
program’s memory is placed, and how it accesses that
memory. Previous NUMA-aware operating systems focused
on locality, attempting to minimize the number of remote
accesses at all costs in order to avoid the performance
penalty. Modern NUMA systems, however, have a strikingly
different latency profile compared with the older ones. A
remote access takes approximately 30 percent longer than a

C1 C2

C3 C4
L3 cache

memory node 1

no
de

 1
no

de
 3

no
de

 2
no

de
 4

C5 C6

C7 C8
L3 cache

memory node 2

C9 C10

C11 C12
L3 cache

memory node 3

C13 C14

C15 C16
L3 cache

memory node 4

1
FIGURE 1: A modern NUMA system

3 of 26memory

acmqueue | september-october 2015 102

local one,2,7 while on older hardware, it could take up to seven
times longer.3 The remote-access penalty is substantially
reduced on modern NUMA systems.

On the other hand, current CPUs can generate an
immense load on the memory subsystem, causing congestion
on memory controllers and interconnect links (if requests
are remote). If multiple cores are heavily accessing a single
node, memory latencies can be as long as 1,200 cycles (!)
due to congestion, while normal latencies are only around
300 cycles. Avoiding memory-controller and interconnect
congestion therefore becomes the key concern on modern
NUMA systems. The following section examines the effects
of congestion on performance.

NUMA PERFORMANCE—LOCALITY AND CONGESTION
Benchmarks can provide a complete picture of the
performance characteristics of NUMA systems. The NAS
(Numerical Aerodynamic Simulation),1 PARSEC (Princeton
Application Repository for Shared-Memory Computers),10
and Metis MapReduce9 suites were chosen here because
they have a CPU utilization greater than 30 percent, allowing
the focus to be on NUMA effects and not other factors such
as disk I/O or blocking synchronization. The experiments
were conducted on an AMD server with four quad-core
CPUs, as described in a later section.

The first experiment quantified the effect of only the
remote-access penalty, without the presence of memory-
subsystem congestion. To do this, the benchmarks were
run with only a single thread, limiting the pressure on the

4 of 26memory

acmqueue | september-october 2015 103

memory controllers and interconnects, and then compared
under two different memory configurations: local and
remote. In the local memory configuration, applications
were executed with their memory and thread on the same
node. In the remote-memory configuration, standard Linux
tools were used to force the application thread to run on a
different node from its memory. Therefore, in the remote-
memory case all memory accesses were remote, and in the
local-memory case all memory accesses were local.

Figure 2a shows performance differences between
local and remote memory configurations for the single-
threaded versions of applications used in this experiment.
Performance never degraded by more than 20 percent, even
when all memory requests were remote.

Although the remote-access penalty is worth minimizing
when possible, that is not the whole story of NUMA
performance effects. To demonstrate this, the benchmarks
were run using multiple threads, with one thread per core
and under two different common NUMA memory-allocation
policies: first-touch and interleave. Linux’s default policy is
first-touch, where memory is allocated on the same node
as the thread that first accesses a memory page. The first-
touch policy is meant to maximize local accesses over
remote accesses, but of course it cannot guarantee local
accesses because data can be shared by threads on multiple
nodes. On the other hand, the interleave policy distributes
memory allocations equally on all nodes regardless of
which threads access it. Interleaving ensures that memory
allocations are balanced but not necessarily that memory

5 of 26memory

acmqueue | september-october 2015 104

6 of 26memory

pe
rf

or
m

an
ce

 d
iff

er
en

ce
 (%

)

BT CG DC EP FT IS LU MG SP UA

Bodytra
ck

Facesim

Fluidanim
ate

Stre
amcluste

r

Swaptio
ns

x264

Kmeans

Matri
xmult

PCA

W
rm

em

20

15

10

5

a. Local vs. remote differences for single-threaded applications

0

pe
rf

or
m

an
ce

 d
iff

er
en

ce
 (%

)

BT (F
)

CG (F
)

DC (F
)

EP (–
)
FT (F

)
IS (I)

LU (F
)

MG (F
)
SP (F

)

UA (F
)

Bodytra
ck (–

)

Facesim
 (I)

Fluidanim
ate

 (–
)

Stre
amcluste

r (
I)

Swaptio
ns (–

)

x264 (I)

Kmeans (I)

Matri
xmult (

–)

PCA (I)

W
rm

em (F
)

80

100

60

40

20

b. First-touch vs. interleave differences for multithreaded applications

0

2
FIGURE 2: Performance differences

acmqueue | september-october 2015 105

accesses will be balanced. Both policies work at the
granularity of a page (typically 4 KB).

Figure 2b shows the absolute performance difference
between first-touch (F) and interleave (I) for multithreaded
versions of applications. The applications are labeled (F) or
(I) depending on which policy performed best. The figure
compares the two policies by showing the performance
difference between the best and worst policy for each
benchmark. If there was no negligible difference, the
application is labeled (-). The first observation to make is that
no one policy is best for all applications. Several applications
perform best with the first-touch policy, but many prefer
interleaving. The second observation is that NUMA effects
beyond the remote-access penalty can indeed severely
affect performance. For the Streamcluster benchmark, using
the first-touch policy nearly doubled the running time over
the interleave policy.

We further investigated the NUMA performance
characteristics of Streamcluster and PCA (another
benchmark that has significant performance loss with the
first-touch policy) by using hardware performance counters
to gather the following key metrics:

3 Local access ratio. The portion of RAM accesses that
result in a local access.

3 Memory latency. The number of cycles it takes to
perform a RAM access, on average. Higher latencies mean
that the CPU must stall for longer on a last-level cache miss,
which will negatively affect performance.

3 Memory-controller imbalance. The standard deviation

7 of 26memory

acmqueue | september-october 2015 106

(as a percentage of the mean) of the load on the memory
controllers, where the load is measured as the number of
requests per time unit. Along with interconnect imbalance, it
is a sign of congestion.

3 Average interconnect usage. The average bandwidth
utilization of the interconnect links. A low interconnect
usage could imply that either the application is not very
memory intensive, or that there is imbalance because some
links are left underutilized.

3 Average interconnect imbalance. The standard
deviation (as a percentage of the mean) of the bandwidth
utilization of interconnect links.

3 L3MPKI. The number of last-level cache misses per
1,000 instructions. This is a relative indicator of how much
pressure an application puts on the memory subsystem and
of how sensitive an application is to memory latencies.

3 IPC (instructions per cycle). For the same application
and workload, a higher IPC means better performance.

The metrics for Streamcluster and PCA are reported
in table 1. Traffic congestion effects are highlighted by
differences in key NUMA metrics for each benchmark
under the first-touch (F) and interleave (I) policies. The
performance difference between the two NUMA policies
cannot be explained by a change in the last-level cache miss
rate, which stays the same. Nor can it be explained by the
local-access ratio, which stays the same for Streamcluster
and in fact is worse for PCA in the case of the better-
performing interleave policy. The local-access ratio of PCA
drops from 33 percent to 25 percent when interleaving

8 of 26memory

acmqueue | september-october 2015 107

memory, but performance improves significantly, so the
conclusion is that better locality does not necessarily
improve performance.

When using the first-touch policy both applications show
signs of congestion with high last-level cache miss rates,
memory-controller imbalance, and interconnect imbalance.
The congestion results in high memory latencies. In the
case of Streamcluster, the average memory latency with
the first-touch policy is more than double the latency of
the interleave policy. Interleaving balances the memory
among the nodes, which reduces traffic hotspots and
congestion, and therefore improves memory latency and
overall performance. A visualization of the memory traffic
and congestion of Streamcluster is shown in figure 3;
traffic imbalance under first-touch is shown on the top and
interleaving on the bottom. Nodes and links bearing the
majority of the traffic are shown proportionately larger in
size and in brighter colors. The percentage values show the
fraction of memory requests destined for each node.

Streamcluster PCA

Best (I) Worst (F) Best (I) Worst (F)

Local-access ratio 25% 25% 25% 33%

Memory latency 476 1197 465 660

Mem-ctrl. imbalance 8% 170% 5% 130%

IC: imbalance 22% 85% 20% 68%

IC: usage 59% 33% 48% 31%

L3MPKI 16.85 16.89 7.35 7.4

IPC 0.29 0.15 0.52 0.36

TABLE 1: Traffic congestion effects

9 of 26memory

acmqueue | september-october 2015 108

NUMA MEMORY PLACEMENT STRATEGIES
The results in figure 2 and table 1 motivate a NUMA
memory-management algorithm that places importance
on congestion management, rather than focusing solely on

First-Touch

Interleave

97%

25% 25%

25% 25%

1%

1%1%

10 of 26memory

3FIGURE 3: Traffic imbalance under first-touch and interleave

acmqueue | september-october 2015 109

reducing remote accesses. That is not to say that reducing
remote accesses is not important (they do, after all, add
latency and contribute to interconnect congestion), but this
should not be the only goal. Managing congestion effectively
means being concerned with how the memory-access traffic
is spread across the system. It is not enough simply to use
interleaving. Many applications do not suffer from imbalance,
so they would needlessly incur remote-access delays (e.g.,
the benchmarks in figure 2b that prefer the first-touch
policy). The algorithm must be able to intelligently place
memory based on the application’s access patterns, such
that congestion is reduced whenever possible but locality
isn’t sacrificed when congestion is minimal. Since access
patterns aren’t known a priori, the algorithm must also be
able to determine the access patterns and move memory at
runtime with low overhead.

In a later section we present our NUMA algorithm,
called Carrefour, which takes all of these considerations
into account. First, though, the next two sections describe
existing NUMA tools available on Linux. (This article gives
an overview of the Carrefour algorithm. Please see Dashti
et al.6 for a complete discussion, including implementation
details and exhaustive experimental results.)

NUMA on Linux

Linux allows administrators to set the NUMA policy for
applications via the numactl utility. The NUMA policies
available are first-touch, interleave, and restricting
allocations to specific nodes. As described earlier, first-
touch is the policy of allocating memory on the same node

11 of 26memory

acmqueue | september-october 2015 110

as the CPU that first accesses the memory page, and the
interleave policy distributes memory pages on nodes in a
round-robin manner.

Linux exposes manual NUMA memory-management
functions to programmers through the libnuma library and
associated system calls. This allows a program to query
the NUMA topology, set NUMA policies for specific address
ranges, and migrate memory pages to different nodes at
runtime. (See Lameter8 for detailed information on Linux’s
NUMA facilities.)

Linux also provides robust support for hardware
performance counters, which are used for counting CPU
events such as cycles elapsed, instructions retired, branch
mispredictions, or cache misses. These events can be
used to calculate the important NUMA metrics listed
previously. Perf is the standard Linux tool for using hardware
performance counters to profile applications. It can gather
data for several events with negligible performance
overhead and minimal developer effort.

Hardware instruction sampling is an advanced CPU
feature similar to performance counters. With instruction
sampling, a proportion of instructions are tagged by the
hardware. Tagged instructions will record extra information
about their execution. It is necessary for obtaining some
NUMA-related statistics, including memory-access latency
and the addresses of memory accesses. The feature is
implemented as IBS (instruction-based sampling) on AMD
CPUs and as PEBS (precision event-based sampling) on Intel
CPUs. Unfortunately, Linux support for hardware-instruction

12 of 26memory

acmqueue | september-october 2015 111

sampling is limited and requires a custom kernel module for
most uses.

AutoNUMA

AutoNUMA4 aims to provide Linux with a more proactive
NUMA solution. A kernel task routinely iterates through the
allocated memory of each process and tallies the number of
memory pages on each node for that process. It also clears
the present bit on the pages, which will force the CPU to
stop and enter the page-fault handler when the page is next
accessed.

In the page-fault handler it records which node and thread
is trying to access the page before setting the present bit
and allowing execution to continue. Pages that are accessed
from remote nodes are put into a queue to be migrated to
that node. After a page has already been migrated once,
though, future migrations require two recorded accesses
from a remote node, which is designed to prevent excessive
migrations (known as page bouncing).

AutoNUMA’s memory-placement algorithm, now known
as Automatic NUMA Balancing, has been merged into the
Linux kernel. It can be enabled through the sysctl interface
by setting kernel.numa_balancing to 1.

AutoNUMA also uses thread placement to try to improve
locality. The scheduler will consider migrating or swapping
threads if it will cause more of the thread accesses to be
local (based on the gathered page-fault statistics) but not at
the cost of introducing load imbalance among CPUs.

13 of 26memory

acmqueue | september-october 2015 112

Carrefour

Carrefour is a memory-placement algorithm for NUMA
systems that focuses on traffic management: placing
memory so as to minimize congestion on interconnect links
or memory controllers.

Carrefour uses global information and memory-usage
statistics to inform three primary techniques for limiting
congestion:

3 Memory collocation. Moving memory to a different
node so that accesses will likely be local.
3 Replication. Copying memory to several nodes so that

threads from each node can access it locally (useful for read-
only and read-mostly data).

3 Interleaving. Moving memory such that it is distributed
evenly among all nodes.

All three of these techniques have been analyzed
individually in prior studies, but Carrefour combines them
into a novel algorithm that is effective for modern NUMA
systems.

To combine these techniques and apply them judiciously,
Carrefour collects per-page, per-process, and global
statistics from hardware performance counters. Carrefour
also uses hardware-instruction sampling to log which
threads and nodes access which memory pages. Instruction
sampling lets Carrefour gather many more samples at low
overhead than AutoNUMA’s page-fault handler technique
because it has lower overhead per sample.

The first metric Carrefour uses is the number of RAM
accesses per microsecond. If it is less than the threshold

C
arrefour
is a memory-
placement
algorithm
for

NUMA systems
that focuses
on traffic
management.

14 of 26memory

acmqueue | september-october 2015 113

(50 in our experiments), then the rest of the algorithm
is completely disabled until it becomes greater than the
threshold. If the rate of RAM accesses is low, then the
application is unlikely to benefit from better memory
placement, so this rule prevents the overhead of Carrefour
when it isn’t needed. If the algorithm does remain enabled,
then Carrefour iterates over the memory pages for which
it has gathered statistics and applies the replication,
collocation, and interleaving techniques.

We implemented memory replication in the Linux
kernel with a patch to the virtual memory layer, and
our implementation is able to automatically maintain
consistency when there is a write to a replicated page.
To enable replication there must be enough free memory
available, and at least 95 percent of the application’s
memory accesses must be reads because the performance
cost of a write to a replicated page is quite high. The rule for
replicating particular pages is simple: pages are replicated
if they are observed to have accesses from multiple nodes
in read-only mode. Replication improves both locality and
congestion because a replicated page can be accessed
locally from more than one node.

Collocation is enabled if the local access ratio is less than
80 percent. Pages that have been accessed only by a single
remote node are migrated to that node, thereby improving
locality.

The primary purpose of interleaving is to alleviate
congestion by distributing memory—and, therefore, memory
accesses—among multiple nodes. The first step is to consider

15 of 26memory

acmqueue | september-october 2015 114

the memory-controller imbalance. If it is below 35 percent,
then interleaving is deemed unprofitable and it is disabled
globally. Otherwise, pages that have recorded read and
write accesses from more than one node are migrated to a
random node, where the probability of being migrated to a
specific node is inversely proportional to the relative load on
that node’s memory controller.

The source code for Carrefour is available at https://
github.com/Carrefour.

EVALUATION
Testbed

All experiments were conducted on an AMD system with 64
GB of RAM and four quad-core Opteron 8385 processors
running at 2.3 GHz. It is divided into four NUMA nodes with
four cores and 16 GB of RAM per node (the topology is shown
in figure 1) interconnected with HyperTransport 1.0 links.

The operating system was Linux kernel v3.6, and the
AutoNUMA configuration used v27 of the patch.

A variety of multithreaded benchmarks were used for the
evaluation: PARSEC benchmark suite v2.1,10 FaceRec v5.0,5
Metis MapReduce benchmark suite,9 and the NAS parallel
benchmark suite v3.3.1 The PARSEC benchmarks used the
“native” workloads, and the NAS benchmarks used problem
sizes that provided running times of at least 10 seconds.
Applications that had CPU utilizations below 33 percent
were excluded because they are not affected by memory-
management policies. Each configuration and benchmark
was run 10 times, which resulted in standard deviations of
less than 2 percent for the Carrefour, default Linux, and

16 of 26memory

acmqueue | september-october 2015 115

interleaving configurations. AutoNUMA gave standard
deviations of up to 9 percent.

Performance

We evaluated Carrefour’s performance against Linux’s
default policy (first-touch), manually interleaving memory
using Linux’s interleave policy, and the AutoNUMA patch.
Figures 4 and 5 show the performance improvement relative
to default Linux.

There are three general classes of applications. First are
those that have the same performance no matter which
NUMA technique is used (e.g., Bodytrack and Swaptions).
These applications are not memory intensive and tend to
have a low last-level cache miss rate. They also don’t suffer
much overhead from Carrefour or AutoNUMA, because most
of the overhead is proportional to the memory intensiveness
of the application.

The second class of applications is memory intensive,
but the default first-touch policy works well for them. BT,
CG, DC, FT, MG, and UA fall into this category. For these
applications, manual interleaving hurts performance
because it eliminates the locality benefit of first-touch
without reducing congestion. On the other hand, Carrefour
does not cause poor memory placement but only has a small
overhead.

The remaining benchmarks suffer from poor memory
placement under default Linux. AutoNUMA is able to improve
the performance of some these applications, but for others
(e.g., FaceRec and PCA) it has only a small impact. Carrefour,
on the other hand, significantly improves the performance of

17 of 26memory

acmqueue | september-october 2015 116

pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

w
ith

 re
sp

ec
t t

o
Li

nu
x

(%
)

BC CG DC EP FT IS LU MG SP UA

autoNUMA
manual interleaving
Carrefour

10

–30

–20

–10

0

–40

pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

w
ith

 re
sp

ec
t t

o
Li

nu
x

(%
)

Bodytra
ck

Facesim

Fluidanim
ate

Stre
amcluste

r

Swaptio
ns

x264

FaceRec

FaceRecLong

Kmeans

Matri
xmultip

ly
PCA

W
rm

em

160
autoNUMA
manual interleaving
Carrefour

180

140
120
100

0
20
40
60
80

–20

18 of 26memory

FIGURE 4: PARSEC and Metis

FIGURE 5: NAS Parallel Benchmarks

4

5

acmqueue | september-october 2015 117

these applications, and in two cases Carrefour greatly
outperforms the second-best technique. It improves the
performance of FaceRecLong by 120 percent over default
Linux, where manual interleaving improves performance
by only 60 percent. Similarly, Carrefour improves the
performance of Streamcluster by 180 percent, and manual
interleaving improves it by only 100 percent.

One exception is IS, which is improved by manual
interleaving but not by Carrefour. Carrefour’s sampling
and migration rate cannot keep up with the burst of traffic
produced by IS, so the memory isn’t balanced in time to
improve performance.

We further profiled select applications in order to see how
Carrefour affects the key imbalance, locality, and latency
metrics. Figures 6 and 7 present the results. Figure 6 shows
the load imbalance for selected benchmarks. Lower is better.

In figure 6a Carrefour consistently minimizes the
imbalance on memory controllers, as does manual
interleaving. AutoNUMA is sometimes able to reduce the
imbalance but usually not to the same degree, and in the
case of FaceRec it makes the imbalance worse than default
Linux. The imbalance on interconnect links, depicted in figure
6b, shows similar trends.

Although manual interleaving is able to reduce imbalance,
it always does so at the cost of locality. This is made evident
in figure 7a. Carrefour, on the other hand, always has the
highest or nearly the highest local memory-access ratio. For
applications that have good locality under default Linux (MG
and SP), AutoNUMA retains the good locality but is able to

19 of 26memory

acmqueue | september-october 2015 118

improve the locality of Facesim.
The effects of imbalance and the local access ratio are

reflected in the memory-access latency, shown in figure
7b. As expected, Carrefour produces the lowest (or is tied
for the lowest) average memory latencies for each profiled

lo
ad

 im
ba

la
nc

e
on

 m
em

or
y

co
nt

ro
lle

rs
 (%

)

Facesim

a. Memory controllers

Stream-
cluster

FaceRec FaceRec-
Long

PCA MG SP

Linux
autoNUMA
manual interleaving
Carrefour

160

20

40

60

80

100

120

140

0

lo
ad

 im
ba

la
nc

e
on

 in
te

rc
on

ne
ct

 li
nk

s
(%

)

Facesim

b. Interconnect links

Stream-
cluster

FaceRec FaceRec-
Long

PCA MG SP

Linux
autoNUMA
manual interleaving
Carrefour

80

20

40

60

0

FIGURE 6: Load imbalance for selected benchmarks

20 of 26memory

6

acmqueue | september-october 2015 119

application. There is also a strong correlation between the
average memory latency and a benchmark’s performance.
For example, Streamcluster and FaceRec have large
reductions in memory latency with Carrefour, and they show

21 of 26memory

FIGURE 7: DRAM latency and locality for selected benchmarks

ra
tio

 o
f l

oc
al

m
em

or
y

ac
ce

ss
es

 (%
)

Facesim

a. Local memory access ratio, higher is better

Stream-
cluster

FaceRec FaceRec-
Long

PCA MG SP

Linux
autoNUMA

manual interleaving
Carrefour120

20

40

60

80

100

0

av
er

ag
e

la
te

nc
y

(n
bC

yc
le

s/
re

q)

Facesim

b. Average memory latency, lower is better

Stream-
cluster

FaceRec FaceRec-
Long

PCA MG SP

Linux
autoNUMA
manual interleaving
Carrefour

1200

200

400

600

800

1000

0

FIGURE 7: DRAM latency and locality for selected benchmarks7

acmqueue | september-october 2015 120

large performance improvements in figure 4.
Overall, we can conclude that Carrefour systematically

fixes NUMA memory-placement issues in nearly all
situations, is able to greatly outperform other techniques
in some circumstances, and does not significantly hurt
performance for any application.

CONCLUSION
NUMA architecture is for scaling the processor count of
today’s server-class systems. In the near future, expect
systems to have even more NUMA nodes and more
complicated NUMA topologies. The experiments described
here show that the performance effects of NUMA are
significant and that the problem is nontrivial, which
motivates careful study and a comprehensive solution.

Contrary to previous NUMA studies, our experiments
found that congestion causes the most serious NUMA
problems. Congestion happens when the rate of requests to
memory controllers or the rate of traffic over interconnects
is too high, which causes excessive delays for memory
accesses. It can be alleviated by balancing the traffic among
multiple memory controllers and interconnect links. The
other factor of NUMA performance is locality, which is what
previous NUMA algorithms have focused on. Good locality
means that most of the memory accesses will be to the local
node and therefore do not pay the latency cost of traversing
interconnect links.

As shown earlier, the two NUMA concerns of congestion
and locality are hard to reconcile, and for any particular

22 of 26memory

acmqueue | september-october 2015 121

application we can’t know the best memory placement
beforehand. Carrefour uses hardware performance counters
and hardware sampling to determine an application’s
memory-access patterns online with low overhead. It
then uses that knowledge to apply three page-level
techniques: memory replication, memory interleaving,
and memory collocation. Each technique serves a specific
purpose: collocation improves locality, interleaving reduces
imbalance, and replication does both in situations when
reads vastly outnumber writes. The novelty of Carrefour is
in combining these strategies and applying each only when
appropriate.

The result is that Carrefour is able to improve
performance compared with default Linux for many
applications. For two benchmarks, Streamcluster and
FaceRecLong, performance is more than doubled by using
Carrefour. Unlike manual interleaving and AutoNUMA,
Carrefour never significantly degrades performance by
making improper page placements.

As NUMA systems grow and the number of cores issuing
memory requests increases, NUMA effects will continue
being a concern. Carrefour demonstrates a collection
of techniques that effectively reduce these concerns.
Developers can use the methods and insights gained from
Carrefour, along with the tools described earlier, to optimize
their applications for NUMA systems.

Acknowledgments

We thank Oracle Labs and the British Columbia Innovation
Council for funding this work.

23 of 26memory

acmqueue | september-october 2015 122

References

1. �Bailey, D., et al. 1994. NAS Parallel Benchmarks. RNR
Technical Report; http://www.nas.nasa.gov/publications/
npb.html.

2. �Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek,
F., Morris, R., Pesterev, A., Stein, L., Wu, M., Dai, Y., Zhang,
Y., Zhang, Z. 2008. Corey: an operating system for many
cores. In 8th Usenix Symposium on Operating Systems and
Design: 43-57.

3. �Brecht, T. 1993. On the importance of parallel application
placement in NUMA multiprocessors. In Proceedings of
the Usenix Symposium on Experiences with Distributed and
Multiprocessor Systems 4: 1.

4. �Corbet, J. 2012. AutoNUMA: the other approach to NUMA
scheduling. LWN.net; http://lwn.net/Articles/488709/.

5. �CSU Face Identification Evaluation System. 2010.
Evaluation of Face Recognition Algorithms. Colorado
State University; http://www.cs.colostate.edu/
evalfacerec/index10.php.

6. �Dashti, M., Fedorova, A., Funston, J., Gaud, F., Lachaize, R.,
Lepers, B., Quema, V., Roth, M. 2013. Traffic management:
a holistic approach to memory placement on NUMA
systems. In Proceedings of the 18th International
Conference on Architectural Support for Programming
Languages and Operating Systems; 381-394.

7. �David, T., Guerraoui, R., Trigonakis, V. 2013. Everything you
always wanted to know about synchronization but were
afraid to ask. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles: 33-48.

24 of 26memory

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://lwn.net/Articles/488709/
http://www.cs.colostate.edu/evalfacerec/index10.php
http://www.cs.colostate.edu/evalfacerec/index10.php

acmqueue | september-october 2015 123

8. �Lameter, C. 2013. An overview of non-uniform memory
access. Communications of the ACM, 56(9): 59-65.

9. Metis MapReduce Library; http://pdos.csail.mit.edu/metis/.
10. PARSEC Benchmark Suite; http://parsec.cs.princeton.edu/.

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org

Fabien Gaud is a senior software engineer at Coho Data,
focusing on performance and scalability. He received his PhD
in 2010 from Grenoble University, and from 2011 to 2014 he
was a post-doctoral fellow at Simon Fraser University.

Baptiste Lepers is a postdoc at Simon Fraser University. His
research topics include performance profiling, optimizations
for NUMA systems, and multicore programming. He likes to
spend his weekends in mountains, hiking and biking.

Mohammad Dashti and Justin Funston are PhD students
at Simon Fraser University. Mohammad holds an MSc
in computer science from SFU and an MSc in mobile
communications from King’s College London. His research
focuses on operating systems, GPGPU, and heterogeneous
CPU/GPU systems, while Justin’s research interests include
memory management, thread scheduling, and multicore
systems.

Alexandra Fedorova got her PhD at Harvard in 2006 under
the supervision of Margo Seltzer. Between 2006 and 2015
she was an Assistant and then Associate Professor at the

25 of 26memory

http://pdos.csail.mit.edu/metis/

acmqueue | september-october 2015 124

School of Computing Science at SFU. Alexandra joined the
ECE department at the University of British Columbia in 2015.
Her research focuses on performance, usability, and energy-
efficiency of computer systems.

Vivien Quéma is a Professor at Grenoble INP (ENSIMAG),
France. His research is about understanding, designing, and
building (distributed) systems. He works on Byzantine fault
tolerance, multicore systems, and P2P systems.

Renaud Lachaize is an Assistant Professor at the University
of Grenoble, France. His research interests are in the area of
operating systems and distributed systems, with currently a
particular focus on multicore systems.

Mark Roth attended Simon Fraser University, earning his
Bachelor’s degree in 2007 and his Master’s in 2012. He
currently works at Google as an engineer.
Copyright © 2015 held by owner/author. Publication rights licensed to ACM.

26 of 26memory

