THE LINUX SCHEDULER:

A DECADE OF WASTED CORES

Jean-Pierre Lozi Baptiste Lepers Fabien Gaud
iplozi@unice.fr baptiste.lepers@epfl.ch me@fabiengaud.net

Ger I COHO
D A T A

Nice

Sophia Antipolis ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Alexandra Fedorova Vivien Quéma

vivien.quema@imag.fr

\

Grenoble INP \

ENsimMAg) } '

sasha@ece.ubc.ca

Justin Funston

l

jfunston@ece.ubc.ca

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 1/16

INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

g -(l’ﬂ- COHO

D A T A

Ermas ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

" Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

- -(I’ﬂ- COHO

Sophia Antipolis D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

* Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

= Compile your kernel in a third terminal:
make —j 62 kernel

- -(I’ﬂ- COHO

Sophia Antipolis
e Al D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

Number of threads in run queue:

= Compile your kernel in a third terminal:

make -j 62 kernel 0 i EEE:?_“:"':"'TL e T S
1 .o . .
* Here is what might happen: =0
g3
<4 T A T
g 5
6
7
. oms 17 55
fo, Henm COHO “jjil, THELINUX SCHEDULER: A DECADE OF WASTED CORES ~ 2/16

Hui!'crsité
e
I Suppia

Antipolis

INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

Number of threads in run queue:

= Compile your kernel in a third terminal: | ___ Numberofihreads in run quev Lol
make —j 62 kernel | et __,t_. 2 -:-_u,_ e i e

* Here is what might happen:
= Two NUMA nodes with

== o'

many idle cores (white) = . Tt o o gl T)
z .
7
Oms 17,58
-(Pﬂ- ‘;?I:I? 333*5})"1\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

Uni!'crsité
Nice

I S()ppia

Antipolis

INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

= Compile your kernel in a third terminal: | __ Numberof th'ea“ r“e
make -j 68 kernel T T ":'_E‘E‘-_—.j:'..‘_w-ﬁ-

-II_‘- l

* Here is what might happen:

= Two NUMA nodes with
many idle cores (white)

55 0
" Other NUMA nodes with many 6 -
overloaded cores (orange, red) 7

W 1T, Tl

‘l q" LII-I--I 11 - L ———_——]

oms 17 52

s iy THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

Him <CTOHO

EEEEEEEEEEEEEEEEEE D A T A

Performance degradation:

INTRODUCTION 14% for the make process!

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

= Compile your kernel in a third terminal: | - Number of thfean rue
make -j 62 kernel = ;’@E._.E_m‘ﬁma.nr_a

* Here is what might happen:
* Two NUMA nodes with

many idle cores (white) - - = e T e S R
= Other NUMA nodes with many 6 1T
overloaded cores (orange, red) 7
Oms 17,58
fo, Henm COHO “jjil, THE LINUX SCHEDULER A DECADE OF WASTED CORES 2/16

INTRODUCTION

= General-purpose schedulers aim to be work-conserving on multicore architectures

= -(I’ﬂ- COHO

Sophia Antipolis D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

&

INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

NUMA node #
~N O 0 kR WM = O

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!

g Htm COHO sl THELINUX SCHEDULER: A DECADE OF WASTED CORES ~ 3/16

| Suppia Antipolis ECOLE POLYTECHNIQUE D A T A

FEDERALE DE LAUSANNE

INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

NUMA node #
~N O 0k WM = O

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

g Hf@ COHO & . i THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

ice
Sophia Antipolis
N e L D A T A

NUMA node #
N O R W NN = O

INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

" This talk: presentation of the CFS scheduler + issues we found + discussion

e H¢m COHO S THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

Sophia Antipolis
u FEDFRA[F DF lAU5ANNE D A T A

INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

NUMA node #
N O R W NN = O

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

" This talk: presentation of the CFS scheduler + issues we found + discussion

Disclaimer: this is a motivation paper!
Don’t expect a solved problem ©

““““““““ b THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

ophia Antipolis
FFDFRA[F DF lAUSANNE D A T A

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

Uni ié ==
Nice [
ophia Antipol

- H(@ COHO i THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

EEEEEEEEEEEEEEEE D A T A

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

One runquevue, threads
sorted by runtime

Université ==
Nice [
ophia Antipolis

-(Pﬂ- COHO 2;;?:"‘:5))"1\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

EEEEEEEEEEEEEEEE D A T A

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

- ma—
When thread done running

R=112 for its timeslice : enqueued again
R=103

One runquevue, threads
sorted by runtime

R =82

R=24

2

e A
P
[l [l
—

\ y,

g, HQNM CTOHO B o)l THELINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

- ma—
When thread done running

R=112 for its timeslice : enqueued again

One runquevue, threads
sorted by runtime

II\
J

Lower niceness = longer timeslice

(tasks allowed to run longer)

).
Université ==
Nice =
ophia Antipolis

-(Pﬂ- COHO 2;:;‘;‘55']\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

EEEEEEEEEEEEEEEEE D A T A

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

- ma—
When thread done running

R=112 for its timeslice : enqueued again

One runquevue, threads
sorted by runtime

II\
J

Cores: next task from runqueue

Lower niceness = longer timeslice

(tasks allowed to run longer)

COHO

D A T A

zai?a‘zs}ﬁ\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

When thread done running

D

One runqueue, threads - . .
. for its timeslice : enqueued again
sorted by runtime

Cores: next task from runqueue

i “th < iceness = longer timesli
In practice: cannot work with single Lower niceness = longer timeslice

runqueuve because of contention! (tasks allowed to run longer)

@ COHO

EEEEEEEEEEEEEEEEE D A T A

2;;?;‘;.‘;))",\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

CFS: IN PRACTICE

H

= One runqueue per core to avoid contention

HH
(g1 gy

I
— l — — — —

<
I

¥

@ COHO

EEEEEEEEEEEEEEEEE D A T A

2&%‘2;})’.\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

load(task) = weight' x % cpu use?

2;;?:1‘;.‘;};’.\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

. ‘ .
niversite
ice
ophia Antipolis

wn3Cc

CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

load(task) = weight' x % cpu use?

H
I_I.

! Lower niceness = higher weight

2;;?::;.‘;})".\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

. ‘ .
Université
Nice
Sopbia Antipolis

CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

load(task) = weight' x % cpu use?

! Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

N

e A COHO
ice
wiaAmipolis ECOLE POLYTECHNIQUE

EEEEEEEEEEEEEEEEEE D A T A

2;2?:::;;})'%\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

vac

CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

2

load(task) = weight' x % cpu use

! Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

£
-
h

2;2?:::;;})'%\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

N

e A COHO
ice
wiaAmipolis ECOLE POLYTECHNIQUE

EEEEEEEEEEEEEEEEEE D A T A

vac

CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

2

H
I_I.

load(task) = weight' x % cpu use

! Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

= Since there can be many cores: hierarchical approach!

@ COHO

EEEEEEEEEEEEEEEEEE D A T A

2;2?;‘;‘33)31\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

CFS: BALANCING THE LOAD

L=2000 L=3000 L=6000 L=1000

T

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

_ J

Him <CTOHO

EEEEEEEEEEEEEEEEE D A T A

CFS: BALANCING THE LOAD

[9
L
Université
Nice
Sop ia Antipolis

CFS: BALANCING THE LOAD

_ J

r--------------H

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

CFS: BALANCING THE LOAD

Balanced! | (

_ J

r--------------H

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

CFS: BALANCING THE LOAD

mtem <oOonov

EEEEEEEEEEEEEEEEEE D A T A

CFS: BALANCING THE LOAD

Balanced!

mtem <oOonov

EEEEEEEEEEEEEEEEEE D A T A

r--------------H

CFS: BALANCING THE LOAD

AVG(L)=2500 -

> AVG(L)=3500

CFS: BALANCING THE LOAD

e AVG(L)=3000 ~— F— " AVG(L)=3000 .
L=3000 L=3000 : ! L=3000 L=3000
e N e N i : r N e N
L
L
B
I B

\

r--------------H

CFS: BALANCING THE LOAD

e AVG(L)Z3000 == ~AVG(L)Z3000
L=3000 L=3000 [Balanced! |} =3000 L=3000
() () i : () ()
L
L
L
I A -

\

r--------------H

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

g -(l’ﬂ- COHO

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘“sessions”’

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

)
[s] =¥
(9}
=

ophia Antipolis

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘sessions”
= |dea: ensure a tty cannot eat up all resources by spawning many threads

-(I’ﬂ- COHO

D A T A

Sreimny ,)‘1 , THE LINUX SCHEDULER: A DECADE OF WASTED CORES

7/16

@)
SFE
=0 =
= (9}
=z

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘‘sessions”
= |dea: ensure a tty cannot eat up all resources by spawning many threads

Session (tty) 1

Session (tty) 2
im COHO

EEEEEEEE)i THE LINUX SCHEDULER: A DECADE OF WASTED CORES

i

FEDERALE DE LAUSANNE

7/16

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”’

= |dea: ensure a tty cannot eat up all resources by spawning many threads

Session (tty) 1

Session (tty) 2
H{rm COHO
FEDERALE DE LAUSANNE D A T A

eeeeeeeee

SN

THE LINUX SCHEDULER: A DECADE OF WASTED CORES

r

.

L=1000

_L=1000 |

~N

J

7/16

wnsc

c =
a
2
U:.

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘‘sessions”
= |dea: ensure a tty cannot eat up all resources by spawning many threads

50% of o , Y0 \
Session (tty) 1 core £

150% @
Session (tty) 2 Lisioo)

~ [l CTOHO
sy Andipolis FEDERALE DE LAUSANNE D A T A

FEDERALE DE LAUSANNE

EEEEEEEE })1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

wnsc

c =
a
2
U:.

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘‘sessions”
" ldea: ensure a tty cannot eat up all resource@y spawning many threads

50% of g
Session (tty) 1 coreéé

Session (tty)
e A COHO
i Anpols FEDERALE DE LAUSANNE D A T A

FEDERALE DE LAUSANNE

L=1000

. J

MY >
- | 1=1000 |

EEEEEEEE })1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

)
[s] =¥
(9}
=

ophia Antipolis

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”’
= Solution: divide the load of a task by the number of threads in its tty!

-(I’ﬂ- COHO

D A T A

Sreimny ,)‘1 , THE LINUX SCHEDULER: A DECADE OF WASTED CORES

7/16

@)
SFE
=0 =
= (9}
=z

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!

Session (tty) 1

Session (tty) 2
im COHO

EEEEEEEE)i THE LINUX SCHEDULER: A DECADE OF WASTED CORES

i

FEDERALE DE LAUSANNE

7/16

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!

Session (tty) 1

[l:

Session (tty) 2

s jjil THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

wnsc

:E‘E)
=7 =
= (2]

-
= w
s E

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!

100% of a f L :
Session (tty) 1 core ' °

A
E

100% of a
Session (tty) 2 core [¢°

~r
Hfm <TOHO
FEDERALE DE LAUSANNE D A T A

})ﬂ, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

| CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!

Session (tty) 1

100% of o
core °°

g

V A /

Wait, d hat Ik
| L=250
gii, does that war
100% of a
Session (tty) 2 core (o Li=250)
g, HMrm COHO “)il THELINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

H

BUG 3

BALANCING THE LOAD:

CFS

L=500
L=250
1=250

Z (£99) =o_mmmm

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=500
Nr N
—

2

S

~

c

O =

3 L =250 |
ﬁ
(¥,

L=1000

L=0

H

BUG 3

BALANCING THE LOAD:

CFS

=500

> L

1000

> L

=0 <«

L

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

CFS: BALANCING THE LOAD: BUG #1

r--------------H

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

CFS: BALANCING THE LOAD: BUG #1

Balanced!

r--------------H

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

CFS: BALANCING THE LOAD: BUG #1

mtem <oOonov

EEEEEEEEEEEEEEEEEE D A T A

CFS: BALANCING THE LOAD: BUG #1

Balanced!

mtem <oOonov

EEEEEEEEEEEEEEEEEE D A T A

CFS: BALANCING THE LOAD: BUG #1

——————————— 6 —v—g—(E)—f—s—o—g—<———------- r-----————:—A—v—g—(E)—f—s—o—g-----------
: L=0 <« ! : L=500 < > L=500 !
: (Y\ | Balanced! i : () | Balanced!| (b I
: N |
1 L |
1 L |
1 L |
1 L |
: L :
i i i 1=250 1=250 i
: L =250 § L =250 | |
| N |
1 L |
I 1 | I
1 L |
1 L |
1 L |
1 L |
i L I

[9
L
Université
Nice
Sop ia Antipolis

CFS: BALANCING THE LOAD: BUG #1

-
—
[l
N
O
(@
\

[= = ———— 6 VG(L)=500 <<
i e Balanced! --E___:_Ay_c_sgp_f_soo
l) | Balanced! o =500 < B e l
: — [) | Balanced! >, L=500 | :
| :
! 1
! 1
! 1
! 1
! 1
| :
i — L=250 i
i =250 :
| b
! 1
! 1
! 1
! 1
! 1
= 1
1
1
1

CFS: BALANCING THE LOAD: BUG #1

-
—
[l
N
O
(@
\

R AVG(L)=500 <
i L=0 «—— L=1000 | Balanced! _______’_Ay_?_(l_.)_f_S_qg ___________
: [) Balanced! T g L=500 < > L=500 :
|) | Balanced! | (N |
: 1
: 1
: 1
: 1
: 1
: 1
: 1
|1 ,
I (000 ek =250 l
: ’ =250 :
i]
: 1
: 1
: 1
: 1
: 1
: 1
= 1

1

1

CFS: BALANCING THE LOAD: BUG #1

AVG(L)=500 - > AVG(L)=500

Balanced! [| — 50 < > L=500

| Balanced!

Balanced!

. J

=_________________.

Fund*
|ih {Fh@

é

r--------------‘

D A T A

CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

Number of threads in run queue: | 0

I III* [1| - ‘I-. I L ‘I. _F _I* = I [| | Ilh i
o m‘.‘ '.. _'-. =y I:."T'.l:.-' 5'1'-_ : '-'1..-|. p—rErELL L P L]) T

el e T T LTl T el e TP TR T TR | 1 "."I 1" __l.-—':l."‘l—ll'
Sy g e el e g e e L

NUMA node #
~l O 0 £ W M = O

Oms 17.5s

2;2?:1‘;.‘;};;.\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

Load: [0] 1 1024

0 o - e —=
1 - I
* -—
v 2 '
2 i
© 3
é ™ L Se—— [—
= 4 L e e
- L| L F
D 5 -II L I
= . -
6 |
7 A
" *
Orms 17.5s

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

Load: | O

Tkl = Load 1 = avg(R thread

U 1
T e— m
1 - . with high load + a few
-2 = make threads with low
E 3 -.: | load)
B g s— = —
S4 e —_— Tl
2 5 B - -
= —
S
7 o
oms 17 55
(e l(l’ﬂI COHO S THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

D A T A

CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

Load: | O

Tkl = Load 1 = avg(R thread

U 1
T e— m
1 - . with high load + a few
-2 = make threads with low
E 3 -.: | load)
B g s— = —
S4 e —_— Tl
2 5 B - -
= —
S
7 o
oms 17 55
(e l(l’ﬂI COHO S THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

D A T A

rom

™ -(l’ﬂ- COHO
Sophia Antipolis

CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

0 - h T u I i , T Load 1 = avg(R thread
Te = ; | with high load + a few
?J 2 o ' : ' - : malke threads with low
E 3 : ; load)
'_'__u.l_ . o —
% 4 —_— T T L 1_F EE—
D 5 - . .
z > . :
: .
7
Oms Load 1 = : the scheduler thinks the load is balanced!

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

D A T A

MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

" Bug #2: on complex machines, hierarchy built incorrectly!

g, Him COHO

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

[r—]

(NN NN | O N | Y | | |
(NN N N | A O

X

MORE BUGS: THE HIERARCHY === |= H|[B5H) [B58

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

" Bug #2: on complex machines, hierarchy built incorrectly!

* Intuition: at the last level, groups
in the hierarchy “not disjoint”

g, Helm COHO & jli THELINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

#
(NN NN | O N | Y | | |
(NN N N | A O
e | e
I | O | I Y | |

" Bug #2: on complex machines, hierarchy built incorrectly!

* Intuition: at the last level, groups

in the hierarchy “not disjoint”

* Can break load balancing:
whole application running on a
single node!

.(I’ﬂ. COHO

ECOLE POLYTECH QUE D A T A

FFFFFFFFFFFFFFFFFF

NUMA node #
7 6 5 4 3 2 10

Cores considered by core 0 during failed load rebalancing events: |"'|

Number of threads in run queue: @

bms

THE LINUX SCHEDULER: A DECADE OF WASTED CORES

0.7s

10/16

MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

#
(NN NN | O N | Y | | |
(NN N N | A O
e | e
I | O | I Y | |

" Bug #2: on complex machines, hierarchy built incorrectly!

* Intuition: at the last level, groups

in the hierarchy “not disjoint”

* Can break load balancing:
whole application running on a
single node!

NUMA node #
7 6 5 4 3 2 10

Cores considered by core 0 during failed load rebalancing events: |"'|

Number of threads in run queue: @

bms

" Bug #3: disabling/reenabling a core breaks the hierarchy completely

.(I’ﬂ. COHO

ECOLE POLYTECH (LUE D A T A

FFFFFFFFFFFFFFFFFF

THE LINUX SCHEDULER: A DECADE OF WASTED CORES

0.7s

10/16

MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H

Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
Oms 225ms 450ms
o
PN
°
g I t : !
g < l 1 1
% o)
© et I DN e
r““ —
rWHu;:me Bug: many idle cores! /16
Sy Antipolis ' Slowed down execution '

NUMA node #
7 6 54 3 210

. A .
Université

ce
| Sophia Antipolis

MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
450ms

Oms

225ms

: . .
Bug: many idle cores! 11/16

Slowed down execution

NUMA node #
7 6 54 3 210

. A .
Université

ce
| Sophia Antipolis

MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

= Only local CPU cores considered for wakeup due to locality “optimization”

Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
450ms

Oms

225ms

: . .
Bug: many idle cores! 11/16

Slowed down execution

MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up
= Only local CPU cores considered for wakeup due to locality “optimization”

* Intuition: periodic load balancing global, wakeup balancing local

Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
225ms 450ms

Oms

NUMA node #
7 6 54 3 210

m Bug: many idle cores! 1/16

ce |
Sophia Antipolis f I
ophia Antipolis Slowed down execution

MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

= Only local CPU cores considered for wakeup due to locality “optimization”

* Intuition: periodic load balancing global, wakeup balancing local

" One makes mistakes the other cannot fix!

» Thread wake-up on a non-idle core
Oms 225ms

NUMA node #
7 6 54 3 210

Bug: many idle cores!

Université

Number of threads in run queue: @ . . .

450m§

ice H
Sophia Antipolis f I
ophia Antipolis Slowed down execution

1/16

MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

= Only local CPU cores considered for wakeup due to locality “optimization”

* Intuition: periodic load balancing global, wakeup balancing local

*= One makes mistakes the other cannot fix!
Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
225ms 450ms

Oms

NUMA node #
7 6 54 3 210

: . .
Bug: many idle cores! 11/16

ic l
Antipolis I i
ntipolis Slowed down execution

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

g, Him COHO

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

" threads among groups of cores in a hierarchy.

g, Him COHO

D A T A

s THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

" threads among groups of cores in a hierarchy.

" In addition to this, threads balance the load by selecting core where to wake up.

Qi -(I’fl- COHO

D A T A

U' , THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps

" threads among groups of cores in a hierarchy.

" In addition to this, threads balance the load by selecting core where to wake up.

= -(I’ﬂ- COHO

@ia Antipolis D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps
" threads among groups of cores in a hierarchy.
7 Fundamental issue here... added with support of complex NUMA hierarchies

" In addition to this, threads balance the load by selecting core where to wake up.

= -(I’ﬂ- COHO

@ia Antipolis D A T A

S ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,
17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps
" threads among groups of cores in a hierarchy.
7 Fundamental issue here... added with support of complex NUMA hierarchies
" In addition to this, threads balance the load by selecting core where to wake up.

1 Fundamental issue here... added with locality optimization for multicore architectures

= .(I’ﬂ- COHO

@ia Antipolis E D A T A

EEEEEEEE ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

wnoC

FS‘:)
c =

a

2

ophia Antipolis

DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps
" threads among groups of cores in a hierarchy.

7 Fundamental issue here... added with support of complex NUMA hierarchies

" In addition to this, threads balance the load by selecting core where to wake up.

1 Fundamental issue here... added with locality optimization for multicore architectures

CFS was simple...

then became complex/broken when needed to support new hardware/uses!

.(Pﬂ- COHO & ... ;)‘1 I THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

D A T A

DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

g -(l’ﬂ- COHO

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

g -(l’ﬂ- COHO

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

= Code testing
" No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

= -(I’ﬂ- COHO

@ia Antipolis D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

= Code testing
" No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

" Performance regression
= Usually done with 1 app on a machine to avoid interactions: insufficient coverage

- -(I’ﬂ- COHO

@iu Antipolis D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

= Code testing
" No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

" Performance regression
= Usually done with 1 app on a machine to avoid interactions: insufficient coverage

" Model checking, formal proofs
= Complex, parallel code: so far, nobody knows how to do it...

il < COHO

D A T A

,}, , THE LINUX SCHEDULER: A DECADE OF WASTED CORES

13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs

Cores considered by core 0 during failed load rebalancing events: || Thread wake-up on a non-idle core: s=— =T i

Number of threads in run queue: @ Number of threads in run queue: @ Load: @ 1

0P 0 .
2 2 ;
3 3 1 I ; — ; =
4 4 | | "= : ; - =
5 [‘. , "
. 6 T
6 7 ex
7 Slowed down execution . : : -
Oms 500ms Oms 17.5s

el CTOHO
D A T

Sopbia Antipolis ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

2;12;?;;};*,\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs

" ldea: detect suspicious situations, monitor them and produce report if they last

Number of threads in run queue: @ Number of threads in run queue: @ Load: @ 1
Cores considered by core 0 during failed load rebalancing events: |'"|'" Thread wake-up on a non-idle core: s— =7 ks = ' e —
O'Hi”iii“i“ii“i”i“ii“ii“Hii“ii“”iii“ii“iiii“ 0 —T& i r 7 DA
1 1 _
2 2 ;
3 3 - f —_ ; =
4 - R . — — =
° : T
6 7 =
7 Slowed down execution : : -
Oms 500ms Oms 17.5s

G (1

Sup ia Antipolis ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

;)n, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs
" ldea: detect suspicious situations, monitor them and produce report if they last

= All bugs presented here detected with sanity checker!

Number of threads in run queue: @ Number of threads in run queue: @ Load: @ 1
Cores considered by core 0 during failed load rebalancing events: |'"|'" Thread wake-up on a non-idle core: s— =7 ks = ' e —
O'Hi”iii“i“ii“i”i“ii“ii“Hii“ii“”iii“ii“iiii“ 0 —T& i r 7 DA
1 1 _
2 2 ;
3 3 - f —_ ; =
4 - R . — — =
° : T
6 7 =
7 Slowed down execution : : -
Oms 500ms Oms 17.5s

G (1

Sup ia Antipolis ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

;)n, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs
" ldea: detect suspicious situations, monitor them and produce report if they last
= All bugs presented here detected with sanity checker!

= Our experience: exact traces are *necessary™® to understand complex scheduling problems

Number of threads in run queue: @ Number of threads in run queue: @ Load: @ 1
Cores considered by core 0 during failed load rebalancing events: |'"|'" Thread wake-up on a non-idle core: s— =7 ks = ' — -
O'Hi”iii“i“ii“i”i“ii“ii“Hii“ii“”iii“ii“iiii“ 0 —T& i r 7 DA
1 1 _
o 2
3 3 - f —_ ; =
4 - R . — — =
° 6 T
6 7 =
7 Slowed down execution : : -
Oms 500ms Oms 17 58

G (1

Sophia Antipolis ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

}),\, THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs

" ldea: detect suspicious situations, monitor them and produce report if they last

= All bugs presented here detected with sanity checker!

= Our experience: exact traces are *necessary™® to understand complex scheduling problems

= Custom visual tool show all scheduling events / migrations / considered cores / load...

Number of threads in run queue: @ Number of threads in run queue: @ Load: @ 1
Cores considered by core 0 during failed load rebalancing events: |'"|'" Thread wake-up on a non-idle core: s— =7 i — ' S —
0" 0 o i : i CERTA
1 W 1 =
2 2 .
3 3 - f —_ ; =
4] T =
° : T
6 7 =
7 Slowed down execution : : -
Oms 500ms Oms 17 58

G (1

Sophia Antipolis ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

s) THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

* Basic fixes for the bugs we analyzed:
" Bug #1: minimum load instead of average (may be less stablel)

" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

* Basic fixes for the bugs we analyzed:
" Bug #1: minimum load instead of average (may be less stablel)

" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)

" Fixes not perfect, hard to ensure they never worsen performance
= Linux scheduler too complex, many competing heuristics added empirically!

" Hard to guess the effect of one change...

il < COHO

D A T A

,}, , THE LINUX SCHEDULER: A DECADE OF WASTED CORES

15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

* Basic fixes for the bugs we analyzed:
" Bug #1: minimum load instead of average (may be less stablel)

" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)

" Fixes not perfect, hard to ensure they never worsen performance
= Linux scheduler too complex, many competing heuristics added empirically!

" Hard to guess the effect of one change...

= Efficient redesign of the scheduler possible?
" We envision scheduler with *isolated™ modules each trying to optimize one variable...

- -(I’ﬂ- COHO

Sophia Antipolis
e Al D A T A

s THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

* Basic fixes for the bugs we analyzed:
" Bug #1: minimum load instead of average (may be less stablel)

" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)

" Fixes not perfect, hard to ensure they never worsen performance
= Linux scheduler too complex, many competing heuristics added empirically!

" Hard to guess the effect of one change...

= Efficient redesign of the scheduler possible?
" We envision scheduler with *isolated™ modules each trying to optimize one variable...

* How do you make them all work together¢ Complex, open problem!

- -(I’ﬂ- COHO

@iu Antipolis D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

= -(I’ﬂ- COHO

Sophia Antipolis D A T A

Ermas ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

&

MDC’
=
o E'
a
=

ophia Antipolis

CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

= Analysis: fundamental issues (added incrementally), even basic invariant violated!

I(I’ﬂ- COHO

D A T A

GGGGGGGG ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

)
[s] =¥
(9}
=

ophia Antipolis

CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!

" Proposed pragmatic detection approach (sanity checker + traces): helpful

-(I’ﬂ- COHO

D A T A

S ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!
" Proposed pragmatic detection approach (sanity checker + traces): helpful

" Proposed fixes: not always satisfactory

= -(I’ﬂ- COHO

@ia Antipolis D A T A

Ermas ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!
" Proposed pragmatic detection approach (sanity checker + traces): helpful

" Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing /performance regression/proofs/...2

= .(I’ﬂ- COHO

@ia!\]"il]()“ﬁ D A T A

EEEEEEEE ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!
" Proposed pragmatic detection approach (sanity checker + traces): helpful

" Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing /performance regression/proofs/...2

Your next paper ©
e .(l’ﬂ- COHO

@iaf‘\nlipnlis E D A T A

GGGGGGGG ,)‘1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

