
THE LINUX SCHEDULER: A DECADE OF WASTED CORES 1/16

Jean-Pierre Lozi

jplozi@unice.fr

Baptiste Lepers

baptiste.lepers@epfl.ch

Fabien Gaud

me@fabiengaud.net

Alexandra Fedorova

sasha@ece.ubc.ca

Justin Funston

jfunston@ece.ubc.ca

Vivien Quéma

vivien.quema@imag.fr

THE LINUX SCHEDULER:
A DECADE OF WASTED CORES

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

 Two NUMA nodes with
many idle cores (white)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

 Two NUMA nodes with
many idle cores (white)

 Other NUMA nodes with many
overloaded cores (orange, red)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

INTRODUCTION

 Take a machine with a lot of cores (64 in our case)

 Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

 Compile your kernel in a third terminal:
make –j 62 kernel

 Here is what might happen:

 Two NUMA nodes with
many idle cores (white)

 Other NUMA nodes with many
overloaded cores (orange, red)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 2/16

Performance degradation:

14% for the make process!

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

 This talk: presentation of the CFS scheduler + issues we found + discussion

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

INTRODUCTION

 General-purpose schedulers aim to be work-conserving on multicore architectures

 Basic invariant: no idle cores if some cores have several threads in their runqueues

 Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

 This talk: presentation of the CFS scheduler + issues we found + discussion

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 3/16

Disclaimer: this is a motivation paper!

Don’t expect a solved problem 

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer)

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer)

Cores: next task from runqueue

THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 4/16

Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads

sorted by runtime

When thread done running

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer)

Cores: next task from runqueue

In practice: cannot work with single

runqueue because of contention!

CFS: IN PRACTICE

 One runqueue per core to avoid contention

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

 Since there can be many cores: hierarchical approach!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 5/16

W=6

Core 0 Core 1

W=1

W=1

W=1

W=1

W=1

W=1

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000
Balanced!

L=2000 L=6000 L=1000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000
Balanced!

L=2000 L=4000 L=3000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000

Balanced! Balanced!

AVG(L)=3500
L=2000

AVG(L)=2500
L=4000 L=3000

CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000

AVG(L)=3000
L=3000 L=3000L=3000

AVG(L)=3000
CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000L=1000

AVG(L)=3000
L=3000 L=3000L=3000

AVG(L)=3000
CFS: BALANCING THE LOAD

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 6/16

L=1000

L=1000

L=3000

L=1000

L=1000

L=1000

L=1000

Core 0 Core 1 Core 2 Core 3

L=3000

L=1000

L=1000L=1000

Balanced!

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000 L=1000

L=1000 L=1000

L=1000

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000 L=1000

L=1000 L=1000

L=1000

50% of a

core

150%

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Idea: ensure a tty cannot eat up all resources by spawning many threads

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=1000

L=1000

L=1000

L=1000

Session (tty) 2

Session (tty) 1

L=1000 L=1000

L=1000 L=1000

L=1000

50% of a

core

150%

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=250 L=250

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

L=250 L=250

L=250

L=250

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

100% of a

core

100% of a

core

L=250 L=250

L=250

L=250

CFS: BALANCING THE LOAD

 Load calculations are actually more complicated, use more heuristics

 One of them aims to increase fairness between “sessions”

 Solution: divide the load of a task by the number of threads in its tty!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 7/16

L=1000

L=250L=250

Session (tty) 2

Session (tty) 1

L=1000

L=250

L=250

100% of a

core

100% of a

core

L=250 L=250

L=250

L=250

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

S
e
ss

io
n
 (

tt
y

)
1

S
e
ss

io
n
 (

tt
y

)
2

S
e
ss

io
n
 (

tt
y

)
2

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

L=250

L=250

L=250

L=250

Balanced! Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500

L=250

L=250

L=250

L=250

Balanced! Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=250

L=250

L=250

L=250

Balanced! Balanced!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=250

L=250

L=250

L=250

Balanced! Balanced!

!!!

CFS: BALANCING THE LOAD: BUG #1

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 8/16

L=1000

Core 0 Core 1 Core 2 Core 3

L=0 L=1000 L=500 L=500

AVG(L)=500 AVG(L)=500
Balanced!

L=250

L=250

L=250

L=250

Balanced! Balanced!

!!!

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

Load 1 = avg(R thread

with high load + a few

make threads with low

load)

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

Load 2 = avg(many

make threads with low

load)

Load 1 = avg(R thread

with high load + a few

make threads with low

load)

CFS: BALANCING THE LOAD: BUG #1

 This was our bug!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 9/16

Load 2 = avg(many

make threads with low

load)

Load 1 = avg(R thread

with high load + a few

make threads with low

load)

Load 1 = Load 2 : the scheduler thinks the load is balanced!

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

 Can break load balancing:
whole application running on a
single node!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: THE HIERARCHY

 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

 Can break load balancing:
whole application running on a
single node!

 Bug #3: disabling/reenabling a core breaks the hierarchy completely

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 10/16

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

 Intuition: periodic load balancing global, wakeup balancing local

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

 Intuition: periodic load balancing global, wakeup balancing local

 One makes mistakes the other cannot fix!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16
Bug: many idle cores!

MORE BUGS: WAKEUPS

 Bug #4: slow phases with idle cores with popular commercial database + TPC-H

 In addition to periodic load balancing, threads pick where they wake up

 Only local CPU cores considered for wakeup due to locality “optimization”

 Intuition: periodic load balancing global, wakeup balancing local

 One makes mistakes the other cannot fix!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 11/16

Performance degradation: 13-24%!

Bug: many idle cores!

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

 threads among groups of cores in a hierarchy.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

 threads among groups of cores in a hierarchy.

 In addition to this, threads balance the load by selecting core where to wake up.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

 In addition to this, threads balance the load by selecting core where to wake up.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

↑ Fundamental issue here... added with locality optimization for multicore architectures

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: HOW DID WE COME TO THIS?

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

↑ Fundamental issue here... added with locality optimization for multicore architectures

CFS was simple...

then became complex/broken when needed to support new hardware/uses!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 12/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

 Performance regression

 Usually done with 1 app on a machine to avoid interactions: insufficient coverage

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

 Performance regression

 Usually done with 1 app on a machine to avoid interactions: insufficient coverage

 Model checking, formal proofs

 Complex, parallel code: so far, nobody knows how to do it...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 13/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

 Our experience: exact traces are *necessary* to understand complex scheduling problems

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

 Our experience: exact traces are *necessary* to understand complex scheduling problems

 Custom visual tool show all scheduling events / migrations / considered cores / load...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 14/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

 Efficient redesign of the scheduler possible?

 We envision scheduler with *isolated* modules each trying to optimize one variable...

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

 Efficient redesign of the scheduler possible?

 We envision scheduler with *isolated* modules each trying to optimize one variable...

 How do you make them all work together? Complex, open problem!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 15/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing/performance regression/proofs/...?

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

CONCLUSION

 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing/performance regression/proofs/...?

Your next paper 

THE LINUX SCHEDULER: A DECADE OF WASTED CORES 16/16

