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Performance degradation:

14% for the make process!
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We found four major bugs that break this invariant in the Linux 
scheduler (CFS)!

 This talk: presentation of the CFS scheduler + issues we found + discussion
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Disclaimer: this is a motivation paper!

Don’t expect a solved problem 
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Core 0 Core 1 Core 2 Core 3

R = 103

R = 82

R = 24

R = 18

R = 12

One runqueue, threads 

sorted by runtime

When thread done running 

for its timeslice : enqueued againR = 112

Lower niceness = longer timeslice

(tasks allowed to run longer) 

Cores: next task from runqueue

In practice: cannot work with single

runqueue because of contention!
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CFS: IN PRACTICE

 One runqueue per core to avoid contention

 CFS periodically balances “loads”:

load(task) = weight1 x % cpu use2

1 Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

 Since there can be many cores: hierarchical approach!
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 This was our bug!
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Load 2 = avg(many

make threads with low

load)

Load 1 = avg(R thread

with high load + a few

make threads with low

load)

Load 1 = Load 2 : the scheduler thinks the load is balanced!
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 We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

 Bug #2: on complex machines, hierarchy built incorrectly!

 Intuition: at the last level, groups
in the hierarchy “not disjoint”

 Can break load balancing:
whole application running on a
single node!

 Bug #3: disabling/reenabling a core breaks the hierarchy completely
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Performance degradation: 13-24%! 

Bug: many idle cores!
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 Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

 To recap, on Linux, CFS works like this:

 It periodically balances, using a metric named load,

↑ Fundamental issue here... appeared with tty-balancing heuristic for multithreaded apps

 threads among groups of cores in a hierarchy.

↑ Fundamental issue here... added with support of complex NUMA hierarchies

 In addition to this, threads balance the load by selecting core where to wake up.

↑ Fundamental issue here... added with locality optimization for multicore architectures

CFS was simple...

then became complex/broken when needed to support new hardware/uses!
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 Linux scheduler keeps evolving, different algorithms, new heuristics...

 Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses! 

 Code testing

 No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

 Performance regression

 Usually done with 1 app on a machine to avoid interactions: insufficient coverage

 Model checking, formal proofs

 Complex, parallel code: so far, nobody knows how to do it...
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DISCUSSION: WHERE DO WE GO FROM HERE?

 What worked for us: sanity checker detects invariant violations to find bugs

 Idea: detect suspicious situations, monitor them and produce report if they last

 All bugs presented here detected with sanity checker!

 Our experience: exact traces are *necessary* to understand complex scheduling problems

 Custom visual tool show all scheduling events / migrations / considered cores / load...
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DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)
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 Basic fixes for the bugs we analyzed:

 Bug #1: minimum load instead of average (may be less stable!)

 Bugs #2-#3 : building the hierarchy differently (seems to always work!)

 Bug #4: wake up on cores idle for longest time (may be bad for energy!)

 Fixes not perfect, hard to ensure they never worsen performance

 Linux scheduler too complex, many competing heuristics added empirically!

 Hard to guess the effect of one change...

 Efficient redesign of the scheduler possible?

 We envision scheduler with *isolated* modules each trying to optimize one variable...

 How do you make them all work together? Complex, open problem!
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 Analysis: fundamental issues (added incrementally), even basic invariant violated!

 Proposed pragmatic detection approach (sanity checker + traces): helpful

 Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing/performance regression/proofs/...?

Your next paper 
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