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INTRODUCTION

" Take a machine with a lot of cores (64 in our case)
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INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

" Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &
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INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

* Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

= Compile your kernel in a third terminal:
make —j 62 kernel
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INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

Number of threads in run queue:

= Compile your kernel in a third terminal:
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INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

Number of threads in run queue:

= Compile your kernel in a third terminal: | ___ Numberofihreads in run quev Lol
make —j 62 kernel | et __,t_. 2 -:-_u,_ e i e

* Here is what might happen:
= Two NUMA nodes with
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INTRODUCTION

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

= Compile your kernel in a third terminal: | __ Numberof th'ea“ r“e
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* Here is what might happen:

= Two NUMA nodes with
many idle cores (white)
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Performance degradation:

INTRODUCTION 14% for the make process!

" Take a machine with a lot of cores (64 in our case)

= Run two CPU-intensive processes in two terminals (e.g. R scripts):
R < script.R --nosave &
R < script.R --nosave &

= Compile your kernel in a third terminal: | - Number of thfean rue
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INTRODUCTION

= General-purpose schedulers aim to be work-conserving on multicore architectures
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INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

NUMA node #
~N O 0 kR WM = O

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!
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INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

NUMA node #
~N O 0k WM = O

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!
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INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

" This talk: presentation of the CFS scheduler + issues we found + discussion
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INTRODUCTION

* General-purpose schedulers aim to be work-conserving on multicore architectures

NUMA node #
N O R W NN = O

= Basic invariant: no idle cores if some cores have several threads in their runqueues

= Can actually happen, but only in transient situations!

We found four major bugs that break this invariant in the Linux
scheduler (CFS)!

" This talk: presentation of the CFS scheduler + issues we found + discussion

Disclaimer: this is a motivation paper!
Don’t expect a solved problem ©
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THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT
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THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

One runquevue, threads
sorted by runtime
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THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

- ma—
When thread done running

R=112 for its timeslice : enqueued again
R=103

One runquevue, threads
sorted by runtime

R =82

R=24

2

e A
P
[l [l
—

\ y,

g, HQNM CTOHO B o)l THELINUX SCHEDULER: A DECADE OF WASTED CORES  4/16




THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

- ma—
When thread done running

R=112 for its timeslice : enqueued again

One runquevue, threads
sorted by runtime
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Lower niceness = longer timeslice

(tasks allowed to run longer)
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THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

- ma—
When thread done running

R=112 for its timeslice : enqueued again

One runquevue, threads
sorted by runtime

II\
J

Cores: next task from runqueue

Lower niceness = longer timeslice

(tasks allowed to run longer)
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THE COMPLETELY FAIR SCHEDULER (CFS): CONCEPT

When thread done running

D

One runqueue, threads - . .
. for its timeslice : enqueued again
sorted by runtime

Cores: next task from runqueue

i “th < iceness = longer timesli
In practice: cannot work with single Lower niceness = longer timeslice

runqueuve because of contention! (tasks allowed to run longer)
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CFS: IN PRACTICE
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= One runqueue per core to avoid contention
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CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

load(task) = weight' x % cpu use?
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CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

load(task) = weight' x % cpu use?
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! Lower niceness = higher weight
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CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

load(task) = weight' x % cpu use?

! Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep
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CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

2

load(task) = weight' x % cpu use

! Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep
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CFS: IN PRACTICE

= One runqueue per core to avoid contention

= CFS periodically balances “loads™:

2

H
I_I.

load(task) = weight' x % cpu use

! Lower niceness = higher weight

2 Prevent high-priority thread from taking
whole CPU just to sleep

= Since there can be many cores: hierarchical approach!
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CFS: BALANCING THE LOAD

L=2000 L=3000 L=6000 L=1000
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CFS: BALANCING THE LOAD
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CFS: BALANCING THE LOAD
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CFS: BALANCING THE LOAD

Balanced!
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CFS: BALANCING THE LOAD

AVG(L)=2500 -
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CFS: BALANCING THE LOAD
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CFS: BALANCING THE LOAD

e AVG(L)Z3000 == ~AVG(L)Z3000
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘“sessions”’
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘sessions”
= |dea: ensure a tty cannot eat up all resources by spawning many threads
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘‘sessions”
= |dea: ensure a tty cannot eat up all resources by spawning many threads

Session (tty) 1

Session (tty) 2
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”’

= |dea: ensure a tty cannot eat up all resources by spawning many threads

Session (tty) 1

Session (tty) 2
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘‘sessions”
= |dea: ensure a tty cannot eat up all resources by spawning many threads
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘‘sessions”
" ldea: ensure a tty cannot eat up all resource@y spawning many threads

50% of g
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”’
= Solution: divide the load of a task by the number of threads in its tty!
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!

Session (tty) 1

Session (tty) 2
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CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!

Session (tty) 1
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Session (tty) 2

s jjil THE LINUX SCHEDULER: A DECADE OF WASTED CORES  7/16



wnsc

:E‘E)
=7 =
= (2]

-
= w
s E

CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!
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Session (tty) 1 core ' °
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| CFS: BALANCING THE LOAD

* Load calculations are actually more complicated, use more heuristics

" One of them aims to increase fairness between ‘““sessions”
= Solution: divide the load of a task by the number of threads in its tty!

Session (tty) 1
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core °°
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BUG 3

BALANCING THE LOAD:

CFS

L=500
L=250
1=250
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BALANCING THE LOAD:

CFS
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CFS: BALANCING THE LOAD: BUG #1
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CFS: BALANCING THE LOAD: BUG #1

Balanced!
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CFS: BALANCING THE LOAD: BUG #1
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Balanced!
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CFS: BALANCING THE LOAD: BUG #1
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CFS: BALANCING THE LOAD: BUG #1
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CFS: BALANCING THE LOAD: BUG #1

AVG(L)=500 - > AVG(L)=500
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CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

Number of threads in run queue: | 0
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CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

Load: [0] 1 1024
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CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

Load: | O

Tkl = Load 1 = avg(R thread
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CFS: BALANCING THE LOAD: BUG #1

" This was our bug!

0 - h T u I i , T Load 1 = avg(R thread
Te = ; | with high load + a few
?J 2 o ' : ' - : malke threads with low
E 3 : ; load)
'_'__u.l_ . o —
% 4 —_— T T L 1_F EE—
D 5 - . .
z > . :
: .
7
Oms Load 1 = : the scheduler thinks the load is balanced!
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MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...
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MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

" Bug #2: on complex machines, hierarchy built incorrectly!
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MORE BUGS: THE HIERARCHY === |= H|[B5H) [B58

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

" Bug #2: on complex machines, hierarchy built incorrectly!

* Intuition: at the last level, groups
in the hierarchy “not disjoint”
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MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...
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" Bug #2: on complex machines, hierarchy built incorrectly!

* Intuition: at the last level, groups

in the hierarchy “not disjoint”

* Can break load balancing:
whole application running on a
single node!
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Cores considered by core 0 during failed load rebalancing events: |"'|

Number of threads in run queue: @ . . . .
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MORE BUGS: THE HIERARCHY

" We saw load balancing hierarchical: cores, pairs of cores, dies, CPUs, NUMA nodes...

#
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" Bug #2: on complex machines, hierarchy built incorrectly!

* Intuition: at the last level, groups

in the hierarchy “not disjoint”

* Can break load balancing:
whole application running on a
single node!

NUMA node #
7 6 5 4 3 2 10

Cores considered by core 0 during failed load rebalancing events: |"'|

Number of threads in run queue: @ . . . .

bms

" Bug #3: disabling/reenabling a core breaks the hierarchy completely
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MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H

Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
Oms 225ms 450ms
o
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°
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MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
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MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

= Only local CPU cores considered for wakeup due to locality “optimization”

Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
450ms

Oms

225ms
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Bug: many idle cores! 11/16

Slowed down execution
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= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up
= Only local CPU cores considered for wakeup due to locality “optimization”

* Intuition: periodic load balancing global, wakeup balancing local

Number of threads in run queue: @ . . .
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MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

= Only local CPU cores considered for wakeup due to locality “optimization”

* Intuition: periodic load balancing global, wakeup balancing local

" One makes mistakes the other cannot fix!

» Thread wake-up on a non-idle core
Oms 225ms
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MORE BUGS: WAKEUPS

= Bug #4: slow phases with idle cores with popular commercial database + TPC-H
* In addition to periodic load balancing, threads pick where they wake up

= Only local CPU cores considered for wakeup due to locality “optimization”

* Intuition: periodic load balancing global, wakeup balancing local

*= One makes mistakes the other cannot fix!
Number of threads in run queue: @ . . .

» Thread wake-up on a non-idle core
225ms 450ms

Oms

NUMA node #
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Bug: many idle cores! 11/16
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DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
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= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,
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= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

" threads among groups of cores in a hierarchy.
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DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

" threads among groups of cores in a hierarchy.

" In addition to this, threads balance the load by selecting core where to wake up.
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DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps

" threads among groups of cores in a hierarchy.

" In addition to this, threads balance the load by selecting core where to wake up.
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= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps
" threads among groups of cores in a hierarchy.
7 Fundamental issue here... added with support of complex NUMA hierarchies

" In addition to this, threads balance the load by selecting core where to wake up.
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DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,
17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps
" threads among groups of cores in a hierarchy.
7 Fundamental issue here... added with support of complex NUMA hierarchies
" In addition to this, threads balance the load by selecting core where to wake up.

1 Fundamental issue here... added with locality optimization for multicore architectures
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DISCUSSION: HOW DID WE COME TO THIS?

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

" To recap, on Linux, CFS works like this:
" |t periodically balances, using a metric named load,

17 Fundamental issue here... appeared with t ty-balancing heuristic for multithreaded apps
" threads among groups of cores in a hierarchy.

7 Fundamental issue here... added with support of complex NUMA hierarchies

" In addition to this, threads balance the load by selecting core where to wake up.

1 Fundamental issue here... added with locality optimization for multicore architectures

CFS was simple...

then became complex/broken when needed to support new hardware/uses!
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DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

g -(l’ﬂ- COHO

D A T A

,}1 | THE LINUX SCHEDULER: A DECADE OF WASTED CORES  13/16



DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!
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DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

= Code testing
" No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs
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DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

= Code testing
" No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

" Performance regression
= Usually done with 1 app on a machine to avoid interactions: insufficient coverage
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DISCUSSION: WHERE DO WE GO FROM HERE?

" Linux scheduler keeps evolving, different algorithms, new heuristics...
* Hardware evolves fast, won’t get any better!

We *need* a *safe* way to keep up with future hardware/uses!

= Code testing
" No clear fault (no crash, no deadlock, etc.), existing tools don’t target these bugs

" Performance regression
= Usually done with 1 app on a machine to avoid interactions: insufficient coverage

" Model checking, formal proofs
= Complex, parallel code: so far, nobody knows how to do it...
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DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs

Cores considered by core 0 during failed load rebalancing events: || Thread wake-up on a non-idle core: s=— =T i

Number of threads in run queue: @ . . . . Number of threads in run queue: @ . . . . Load: @ 1
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DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs

" ldea: detect suspicious situations, monitor them and produce report if they last
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DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs
" ldea: detect suspicious situations, monitor them and produce report if they last

= All bugs presented here detected with sanity checker!
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DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs
" ldea: detect suspicious situations, monitor them and produce report if they last
= All bugs presented here detected with sanity checker!

= Our experience: exact traces are *necessary™® to understand complex scheduling problems

Number of threads in run queue: @ . . . . Number of threads in run queue: @ . . . . Load: @ 1
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DISCUSSION: WHERE DO WE GO FROM HERE?

* What worked for us: sanity checker detects invariant violations to find bugs

" ldea: detect suspicious situations, monitor them and produce report if they last

= All bugs presented here detected with sanity checker!

= Our experience: exact traces are *necessary™® to understand complex scheduling problems

= Custom visual tool show all scheduling events / migrations / considered cores / load...

Number of threads in run queue: @ . . . . Number of threads in run queue: @ . . . . Load: @ 1
Cores considered by core 0 during failed load rebalancing events: |'"|'" Thread wake-up on a non-idle core: s— =7 i — ' S —
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DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

* Basic fixes for the bugs we analyzed:
" Bug #1: minimum load instead of average (may be less stablel)

" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)
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* Basic fixes for the bugs we analyzed:
" Bug #1: minimum load instead of average (may be less stablel)

" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)

" Fixes not perfect, hard to ensure they never worsen performance
= Linux scheduler too complex, many competing heuristics added empirically!

" Hard to guess the effect of one change...
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" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)

" Fixes not perfect, hard to ensure they never worsen performance
= Linux scheduler too complex, many competing heuristics added empirically!

" Hard to guess the effect of one change...

= Efficient redesign of the scheduler possible?
" We envision scheduler with *isolated™ modules each trying to optimize one variable...
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DISCUSSION: FIXING THE SCHEDULER POSSIBLE?

* Basic fixes for the bugs we analyzed:
" Bug #1: minimum load instead of average (may be less stablel)

" Bugs #2-#3 : building the hierarchy differently (seems to always work!)

" Bug #4: wake up on cores idle for longest time (may be bad for energy!)

" Fixes not perfect, hard to ensure they never worsen performance
= Linux scheduler too complex, many competing heuristics added empirically!

" Hard to guess the effect of one change...

= Efficient redesign of the scheduler possible?
" We envision scheduler with *isolated™ modules each trying to optimize one variable...

* How do you make them all work together¢ Complex, open problem!
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CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
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CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem

= Analysis: fundamental issues (added incrementally), even basic invariant violated!
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CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!

" Proposed pragmatic detection approach (sanity checker + traces): helpful
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CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!
" Proposed pragmatic detection approach (sanity checker + traces): helpful

" Proposed fixes: not always satisfactory
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CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!
" Proposed pragmatic detection approach (sanity checker + traces): helpful

" Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing /performance regression/proofs/...2
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CONCLUSION

= Scheduling (as in dividing CPU cycles among theads) often thought to be a solved problem
= Analysis: fundamental issues (added incrementally), even basic invariant violated!
" Proposed pragmatic detection approach (sanity checker + traces): helpful

" Proposed fixes: not always satisfactory

Open problem: how do we ensure the scheduler works/evolves correctly ?

New design? New techniques involving testing /performance regression/proofs/...2
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