
IBD – Intergiciels et
Bases de Données

Socket-based distributed systems

Fabien Gaud, Fabien.Gaud@inrialpes.fr

http://www-ufrima.imag.fr/  Placard électronique  M1 Info  IBD

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 2

Client/server applications

 A server provides some services
 Examples

 processing database queries
 sending out current stock prices

 A client uses some services provided by a server
 Examples

 displaying database query results to the user
 making stock purchase recommendations to an investor

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 3

Client/server applications (2)

 Synchronous communication

client

Computer 1

server

Computer 2

Communication system

1. request

2. service
execution

3. response

Web server
(e.g. Apache)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 4

Protocol layers

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 5

Internet Protocol

 IP (Internet Protocol)
 The Internet is not the Web
 Corresponds to the network layer of the OSI model
 Addressing, routing and transport of data packets

 IP addresses are names
 4 bytes, naming a host machine (e.g. 192.168.2.100)
 IP addresses are location dependent

 IP Routing on LANs
 Physical layer directly provides this

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 6

The Internet

router

router

router

router

Cross-network Routes

router

router

 IP Routing on WANs
 It is a collaborative and distributed protocol between routers
 Routers exchange their routing tables to build up their routing

knowledge

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 7

Ports

 Ports are end points
 For communication channels over IP
 An IP address and a port names an end point

 Port numbers are managed by the operating system
 Many important services have a standardized port
 Example: port 25 for telnet service
 Port between 1 and 1023 are reserved

 Port numbers are allocated on-demand to processes
 A telnet service provider will be allocated the port 25
 Only one process may be allocated the port 25

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 8

Ports (2)

 Communication Channel
 Between two ports, allocated to two processes
 Two processes may be on the same machine or not

 Client-Server Pattern
 The server waits for data from the channel
 A client process is allocated a port when establishing the

communication channel to a server

client

Computer 1

server

Computer 2

Communication system

client

Computer 1

server

Computer 2

Communication system

Web server
(e.g. Apache)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 9

Sockets

 Basic Middleware
 A programming model based on streams
 A behavior semantics (UDP,TCP, ...)

 Programming Model
 A socket is the endpoint of a communication channel
 A socket represents a port allocated to a process on a machine
 Through a stream interface, one may send/receive bytes through a

socket

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 10

Sockets – Steps Involved

 Server side
 Creation of the server process

 Request a socket on a port
 The local port is granted by the operating system

 Server waits for incoming data

Server Machine

"server socket "

4320

"server port"

"server process"

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 11

Sockets – Steps Involved

 Client side
 Creation of the client process
 Request a channel to the remote port

 A local port is allocated
 The communication channel is established

 The two sockets are connected to each other
 Client sends/receives data

Client Machine

"client socket "

36243

"client proces "

Server Machine

"server socket "

4320

"server port"

"server process"

"client port"

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 12

User Datagram Protocol

 UDP (User Datagram Protocol)
 Over IP that routes data packets

 Data packets are of fixed size
 But different sizes for 100Mbps or 1Gbps Ethernet

 WARNING
 Output stream is automatically sliced into data packets
 Data packets may be lost or reordered
 But very efficient (just an IP++)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 13

Transmission Control Protocol

 TCP (Transmission Control Protocol)
 Also above IP, but it is lossless and FIFO

 Lossless: data packets are not lost
 FIFO: data packets are delivered in the order they were sent

 Can be used as a real stream
 Bytes can be streamed through
 Bytes will not be lost and arrive in the same order

 A connection-oriented protocol
 An actual point-to-point connection needs to be opened and closed
 Connections introduce an overhead

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 14

UDP and TCP

 Typical applications
 UDP

 Require high bandwidth, can accept loss or reordering
 Examples:

 Transmission of video/sound in real time
 Out of sequence or incomplete frames are just dropped

 Other more complex communication protocols
 Such as totally-ordered multicast using Lamport's logical clocks

 TCP
 Transferring files (ftp for instance)
 Downloading web pages or images

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 15

Sockets – A bit of history

 Originally
 Sockets were developed for BSD Unix, in the 1980s
 Sockets used to be part of the operating system; they had to be

invoked via system-specific libraries for C/C++
 Programming distributed applications was hard (access was

different from one OS to another, programs were not portable)

 Today
 Sockets are available on all platforms and represent the most

fundamental communication mechanism
 Example: the Java programming interface for sockets abstracts

them from the underlying OS, making them easier to use

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 16

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 17

Addressing in Java

 The java.net package provides the following
addressing-related classes:

 InetAddress
 Inet4Address
 Inet6Address

 SocketAddress
 InetSocketAddress

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 18

IP addressing in Java

 For IP addressing, three classes are provided:
 InetAddress represents an IP address
 Inet4Address represents a 32-bit IPv4 address
 Inet6Addresss represents a 128-bit IPv6 address

InetAddress

Inet6AddressInet4Address

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 19

IP addressing in Java

 InetAddress Class
 Represents an IP address

 Either a 32- or 128-bit unsigned number used by IP
 No public constructor

 static InetAddress getLocalHost()
 Returns the local host

 static InetAddress getByName(String hostname);
 Lookup a host machine by name

 Some API elements
 String getHostAddress()

 Returns the IP address string in textual presentation.
 String getHostName()

 Gets the host name for this IP address.
 E.g. hoff.e.ejf-grenoble.fr

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 20

IP addressing in Java

 Inet4Address
 Represents a 32-bit IPv4 address

 Some API elements
 byte[] getAddress()

 Returns the raw IP address of this InetAddress object
 String getHostAddress()

 Returns the IP address string in textual presentation form
 Familiar form (a.b.c.d), e.g. 129.250.35.250

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 21

IP addressing in Java

 Host name to IP address resolution
 Using a network naming service

 DNS (Domain Name System)
 NIS (Network Information Service)

 Discussing DNS
 A fairly complex world-wide distributed system

 Associate names to IP addresses
 Allows aliases (one IP address, several names)

 Organized as hierarchical zones across the world
 A zone is managed by a DNS server

 Replicated servers for high-availability

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 22

Socket addressing in Java

 SocketAddress
 Abstract class for a socket address
 Independent of any specific addressing protocol

 InetSocketAddress
 It represents a socket address over IP
 Essentially an IP address and a port

 For example 129.250.35.250 and port 80
 A hostname can be used instead of an IP address

 It will be looked up using InetAddress.getByName(String)

SocketAddress

InetSocketAddress

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 23

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 24

Java Sockets over TCP

 General Schema
 A connection is opened between a client and a server,
 A series of request/response (i.e. messages) are exchanged
 The connection is closed

 Server-side Session
 Servers often maintain a session per client

 Each session maintains the state of client-server interaction
 A typical example is HTTP sessions

 Remember
 TCP is a loss-less and FIFO protocol

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 25

Java classes related to TCP sockets

 The java.net package provides
 ServerSocket class
 Socket class

 ServerSocket
 It represents the socket on a server
 Servers accept incoming connections

 Socket
 It represents the endpoints
 Both on server and client sides

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 26

Example of Java sockets/TCP

import java.net.*;

int port = 1234;

// Create a server socket associated with port 1234

ServerSocket server = new ServerSocket(port);

// End-less loop

while (true) {

System.out.println("Waiting for client…");

// Server waits for a connection

Socket client = server.accept();

// A client connected

System.out.println("Client " + client.getInetAddress() +
" connected.");

// Server receives a message from client

...

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 27

import java.net.*;

int port = 1234;

// Create a server socket associated with port 1234

ServerSocket server = new ServerSocket(port);

// End-less loop

while (true) {

System.out.println("Waiting for client…");

// Server waits for a connection

Socket client = server.accept();

// A client connected

System.out.println("Client " +
client.getInetAddress() + " connected.");

// Server receives a message from client

...

}

Example of Java sockets/TCP

import java.net.*;

String serverHost = "sun";

int serverPort = 1234;

// Client connects to server

Socket server;

server = new Socket(serverHost,serverPort);

// Client connected

System.out.println("Connected to " +
server.getInetAddress());

// Client sends a message to server

...

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 28

Streams

 Definition
 Streams are an abstraction for arbitrary data streams
 Input streams used to receive (i.e. read) bytes
 Output streams used to send (i.e. write) bytes

 Examples
 Streams from/to a socket
 Streams from/to a file
 Streams from/to the console

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 29

Streams in Java

 The java.io package contains the following classes related to streams:
 InputStream / OutputStream

 abstract classes that respectively represent input streams of bytes and output
streams of bytes

 ObjectInputStream / ObjectOutputStream
 classes respectively representing input streams of Java objects and output

streams of Java objects

 FileInputStream / FileOutputStream
 classes representing input streams for respectively reading data from a file ou

writing data to a file

 FilterInputStream / FilterOutputStream
 classes that respectively contain other input streams or output streams, which

it uses to possibly transform data along the way

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 30

Java Sockets and Streams

import java.io.*;

...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();

// A client connected
System.out.println("Client " + client.getInetAddress() + " connected.");

// Get the server’s output stream
OutputStream os = client.getOutputStream();

// Build data and transform it to bytes
Date date = new Date();
byte[] b = date.toString().getBytes();

// Write in output stream
os.write(b);

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 31

import java.io.*;

...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();

// Get the server’s output stream
OutputStream os = client.getOutputStream();

// Build data and transform it to bytes
Date date = new Date();
byte[] b = date.toString().getBytes();

// Write in output stream
os.write(b);

}

Java Sockets and Streams

import java.io.*;

...
// Client connects to server
Socket server = new Socket(serverHost, serverPort);

// Get the client’s input stream
InputStream is = server.getInputStream();

// Read data from input stream
byte[] b = new byte[100];
int num = is.read(b);

// Transform data from bytes to String
String date = new String(b);
System.out.println("Server said: " + date);

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 32

Java Sockets and Streams

// Get the server's output stream
OutputStream os = client.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// Get the client’s input stream
InputStream is = server.getInputStream();
byte[] b = new byte[100];
int num = is.read(b);
String date = new String(b);

Correct?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 33

Java Sockets and Streams

// Get the server's output stream
OutputStream os = client.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// Get the client’s input stream
InputStream is = server.getInputStream();
byte[] b = new byte[100];
int num = is.read(b);
String date = new String(b);

 Maybe, Maybe Not
 Assumes:

 Nothing is left in the input stream
before reading

 The entire string has been
received when reading

 Just not always true
 Some previous read might have

left something...
 Beware of IP data packets...

Socket stream

IP packets

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 34

Java Sockets and Streams

// Get the server's output stream
OutputStream os = client.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// Get the client’s input stream
InputStream is = server.getInputStream();
byte[] b = new byte[100];
int num = is.read(b);
String date = new String(b);

Correct?

 Maybe, Maybe Not
 Assumes:

 Nothing is left in the input stream
before reading

 The entire string has been
received when reading

 Just not always true
 When sending variable length

data structures, send the length
 How?

 Length is an integer
 We can send bytes

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 35

Java Sockets and Streams

// Get the server's output stream
OutputStream os;
DataOutputStream dos;
os = client.getOutputStream();
dos = new DataOutputStream(os);

Date date = new Date();
byte[] b = date.toString().getBytes();
dos.writeInt(b.length);
dos.write(b);

// Get the client’s input stream
InputStream is;
DataInputStream dis;
is = server.getInputStream();
dis = new DataInputStream(is);
int length = dis.readInt();
byte[] b = new byte[length];
int num = dis.read(b,0,length);
String date = new String(b);

 DataOutputStream
 Extends FilterOutputStream
 Provides type-aware operations
 Endianness proof !
 But introduces an overhead

 Solution
 Sending the length Correct?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 36

Java Sockets and Streams

// Get the server's output stream
OutputStream os;
DataOutputStream dos;
os = client.getOutputStream();
dos = new DataOutputStream(os);

Date date = new Date();
String str = date.toString();
dos.writeUTF(str);

// Get the client’s input stream
InputStream is;
DataInputStream dis;
is = server.getInputStream();
dis = new DataInputStream(is);
String date = dis.readUTF();

 String Encoding...
 Depends on your string encoding...

 Better to use UTF-8
 DataOutputStream.writeUTF(b)

 How about now?
 Yes, but keep in mind that any

variable length data structure needs
to be prefixed with its length... Correct?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 37

Java Sockets and Streams

import java.io.*;
...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();

// A client connected
System.out.println("Client " + client.getInetAddress() + " connected.");

// Get the server’s output stream
OutputStream os = client.getOutputStream();
// Get the associated object output stream
ObjectOutputStream oos = new ObjectOutputStream(os);

// Write object in output stream
Date date = new Date();
oos.writeObject(date);
// Close output stream
oos.close();

}

We could also use Java Object streams...

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 38

import java.io.*;
...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();
// A client connected
System.out.println("Client " + client.getInetAddress() + " connected.");
// Get the server’s output stream
OutputStream os = client.getOutputStream();
// Get the associated object output //stream
ObjectOutputStream oos = new

ObjectOutputStream(os);
// Write object in output stream
Date date = new Date();
oos.writeObject(date);
// Close output stream
oos.close();

}

Java Object Streams

import java.io.*;

...
// Client connects to server
Socket server = new Socket(serverHost,

serverPort);
// Client connected
System.out.println("Connected to " +

server.getInetAddress());

// Get the client’s input stream
InputStream is = server.getInputStream();
// Get the associated object input stream
ObjectInputStream ois = new

ObjectInputStream(is);

// Read object from input stream
Date date = (Date) ois.readObject();

System.out.println("Server said: " +
date);

// Close input stream
ois.close();

Looking at both server and client sides...

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 39

Java Object Streams

 Based on the Java Serialization framework
 Any class may implement the Serializable interface
 If it does, instances of that class can be serialized
 Serialization is a deep copy

 Recursive serialization along object references
 Sharing is respected

 Warning
 Deep copy does not stop by itself

 If any object encountered is not serializable, an exception is thrown
 Most JRE classes are serializable

 Possible control point
 References in classes may be declared transient (easy)
 Redefine how instances of a class are serialized (harder)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 40

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 41

Java sockets over UDP

 Networking in the unconnected mode (using UDP)
 Some applications that communicate over the network do not require

reliable, point-to-point channel provided by TCP

 Applications might benefit from a mode of communication that delivers
independent packages of information whose arrival and order of arrival
are not guaranteed

 UDP protocol provides a mode of network communication whereby
applications send packets of data, called datagrams, to one another.

 A datagram is an independent self-contained message sent over the
network whose arrival, arrival time, and order are not guaranteed.

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 42

Java classes related to UDP

 java.net.DatagramPacket
 Represents a data packet

 Essentially a byte buffer
 Maximum buffer length is known by calling

DatagramSocket. getReceiveBufferSize()

 Includes an InetAddress and port number

 java.net.DatagramSocket
 Used for sending and receiving datagram packets
 Communication happens over UDP

 Send a DatagramPacket by calling send on a DatagramSocket
 Receive a DatagramPacket by calling receive on a DatagramSocket

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 43

Example of Java sockets/UDP

import java.net.*;

int port = 1234;
// Create a datagram socket associated
// with the server port
DatagramSocket serverSock = new DatagramSocket(port);
// End-less loop
while (true) {

System.out.println("Waiting for client packet…");
byte[] buf = new byte[256];
// Create a datagram packet
DatagramPacket packet = new
DatagramPacket(buf, buf.length);

// Wait for a packet
 serverSock.receive(packet);

// Get client IP address and port number
InetAddress clientAddr = packet.getAddress(); int clientPort = packet.getPort();
// Build a response
initialize buf ...
// Build a datagram packet for response
packet = new DatagramPacket(buf, buf.length, clientAddr, clientPort);
// Send a response
serverSock.send(packet);

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 44

import java.net.*;

int port = 1234;
// Create a datagram socket associated
// with the server port
DatagramSocket serverSock = new DatagramSocket(port);
// End-less loop
while (true) {

System.out.println("Waiting for client packet…");
byte[] buf = new byte[256];
// Create a datagram packet
DatagramPacket packet = new

DatagramPacket(buf, buf.length);
// Wait for a packet
 serverSock.receive(packet);

// Get client IP address and port number
InetAddress clientAddr = packet.getAddress(); int clientPort = packet.getPort();
// Build a response
initialize buf ...
// Build a datagram packet for response
packet = new DatagramPacket(buf, buf.length, clientAddr, clientPort);
// Send a response
serverSock.send(packet);

}

Example of Java sockets/UDP

import java.net.*;

int serverPort = 1234;
String serverHost = ...;

// Create a datagram socket
DatagramSocket clientSock = new DatagramSocket();

byte[] buf = new byte[256];
// Get server’s IP address
InetAddress serverAddr =

InetAddress.getByName(serverHost);
// Build a request
initialize buf ...
// Create a datagram packet destined for the
// server
DatagramPacket packet = new DatagramPacket(buf,

buf.length, serverAddr, serverPort);
// Send datagram packet to server
clientSock.send(packet);

// Build a datagram packet for response
packet = new DatagramPacket(buf, buf.length);
// Receive response
clientSock.receive(packet);
String received = new String(packet.getData(), 0,

packet.getLength());
System.out.println("Response: " + received);

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 45

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 46

Java Multicast

 Based on UDP Sockets
 DatagramPacket (same as before)
 MulticastSocket extends DatagramSocket

 Relies on IP-level multicast
 Multicast IP addresses

 Class D addresses are reserved for multicast
 In the range 224.0.0.0 to 239.255.255.255

 A multicast group
 A multicast address and a port

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 47

Java Multicast

 Multicasting to a group
 Needs to create a DatagramPacket
 Destination is the group InetAddress and port
 Normal UDP send

 Joining a multicast group
 Create the MulticastSocket with the group port
 Needs to join the multicast group, use the group InetAddress
 Receives messages multicasted to the group

 Leaving a multicast group
 Explicit departure from a multicast group

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 48

Java Multicast – Receiving

// Import some needed classes
import sun.net.*;
import java.net.*;

// Multicast group
int groupPort = 5000;
InetAddress groupAddr = InetAddress.getByName("225.4.5.6");

// Create the socket
MulticastSocket s = new MulticastSocket(groupPort);
s.joinGroup(groupAddr);

// Create a DatagramPacket and do a receive
DatagramPacket pack;
byte buf[] = byte[1024];
pack = new DatagramPacket(buf, buf.length);

s.receive(pack);

// When done...
// leave the multicast group and close the socket
s.leaveGroup(InetAddress.getByName(group));
s.close();

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 49

Java Multicast – Sending
import sun.net.*;
import java.net.*;

// Multicast group
int groupPort = 5000;
InetAddress groupAddr = InetAddress.getByName("225.4.5.6");

// Create the socket
// but we don't bind it and we don't join the multicast
group
// as we are only going to send data
MulticastSocket s = new MulticastSocket();

byte buf[] = byte[10];
for (int i=0; i<buf.length; i++) buf[i] = (byte)i;

// Create a DatagramPacket
DatagramPacket pack = new DatagramPacket(buf, buf.length,

groupAddr, groupPort);
// Do a send.
byte ttl = 1;
s.send(pack,ttl);

// And when we have finished sending data close the socket
s.close();

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 50

Java Multicast

 Caveats
 IP Multicast is supported by many routers

 But most Internet providers forbid IP Multicast
 Over the public Internet, multicast is simply not available

 Usable on local LANs however

 Middleware Multicast
 Multicast can be built above IP or UDP

 Using point-to-point messages

 Middleware provides
 Group management and membership to groups

 From simple groups to publish-subscribe topics
 Other multicast properties

 Totally-ordered multicast, reliable multicast

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 51

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 52

Network Resources

 Examples of network resources
 An image, audio file available on the network
 A program file, such as a Servlet, available on the network

 Java classes related to locating or identifying network
resources (c.f. package java.net)
 URI
 URL
 URLClassLoader
 URLConnection
 URLStreamHandler
 HttpURLConnection
 JarURLConnection

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 53

Network Resources

 URI – Uniform Resource Identifier
 It is an identifier for a resource
 But not necessarily a locator for that resource

 URL – Uniform Resource Locator
 A URL tells how to access the resource
 The protocol used to locate the resource is known from the URL

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 54

Network Resources

 A URL is a pointer to a "resource" on the World Wide Web
 Example of a URL:

 http : //java.sun.com
 A URL has two main components:

 Protocol identifier
 Hypertext Transfer Protocol (HTTP)
 File Transfer Protocol (FTP)

 Resource name
 The name format depends entirely on the protocol used

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 55

Network Resources

 More URL Names
 The format of the resource name depends entirely on the protocol

used
 For many protocols, including HTTP, the resource name contains

one or more of the components listed below:
 Host Name: the name of the machine on which the resource lives.
 Port Number: the port number to which to connect (typically optional).
 Filename: the pathname to the file on the machine.
 Reference: a reference to a named anchor within a resource that

usually identifies a specific location within a file (typically optional).

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 56

Network Resources

 URLConnection
 Abstract superclass of all connection classes
 Used by applications to identify and locate network resources
 Usage:

 Obtain a URLConnection from a URL
 static URLConnection URL.openConnection()

 Connect
 URLConnection.connect() actually opens the connection
 URLConneciton.getInputStream() to read the resource

 HttpURLConnection
 It is the most commonly used implementation
 It uses the HTTP protocol

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 57

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 58

Threads in JAVA

 Integrated into the language
 Creation / Execution
 Synchronization mechanisms

 One process, the JVM

 User vs Kernel threads

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 59

Thread states

 A thread can be in different states

See Thread.State for details

Created Blocked

Dead Executing

Ready

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 60

Thread objects

 Two ways
 Extends Thread
 Implements Runnable

This example taken from Java Thread tutorial

public class HelloThread extends Thread {

 public void run() {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[]) {
 (new HelloThread()).start();
 }

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 61

Thread objects (2)

 Another way is to use the Runnable interface

 Be careful, directly calling the run method does not create a
thread

public class HelloRunnable implements Runnable {

 public void run() {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[]) {
 (new Thread(new HelloRunnable())).start();
 }

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 62

Another Example

public class Counter {
private int counter;
public Counter (int c){

counter = c;
}
void increment(){

counter++;
}
void decrement(){

counter--;
}
int getCounter(){

return counter;
}

}

public class Example extends Thread {
private int no;
private Counter c;

public Example(int no, Counter c) {
this.no = no; this.c = c;

}
public void run() {

 try {
Thread.sleep(100);
if((no % 2) == 0)

c.increment();
else

c.decrement();
}
catch (InterruptedException e) {

// Handling
}

 }
 public static void main(String args[])

throws InterruptedException {
 Counter c = new Counter(0);

Thread T1 = new Example(0,c);
Thread T2 = new Example(1,c);
T1.start();
T2.start();
T1.join();
T2.join();

 System.out.println("Counter = " + c.getCounter());
 }
}

Correct ?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 63

Another Example (2)

 Results on 10 iterations

 ++ / -- are not atomic operations

 Concurrent accesses to a shared memory need protecting it

Counter = -1
Counter = 0
Counter = 0
Counter = 0
Counter = -1
Counter = 0
Counter = 0
Counter = 1
Counter = 0
Counter = 0

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 64

The synchronized keyword

 Synchronization is based on monitors

 The synchronized keyword permits to set critical sections

 The synchronized keyword applies on an object

 Possibility to wait() on a condition and to notify() a waiter

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 65

Synchronized example
public class Counter {

private int counter;
public Counter (int c){

counter = c;
}
synchronized void increment(){

counter++;
}
synchronized void decrement(){

counter--;
}
synchronized int getCounter(){

return counter;
}

}

public class Counter {
private int counter;
public Counter (int c){

counter = c;
}
void increment(){

synchronized (this) {
counter++;

}
}
void decrement(){

synchronized (this) {
counter--;

}
}
int getCounter(){

synchronized (this) {
return counter;

}
}

}

[...]
if((no % 2) == 0){

synchronized (c) {
c.increment();

}
}
else{

synchronized (c) {
c.decrement();

}
}

[...]

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 66

Another synchronization example
public class Example2 extends Thread {

final static int nbThreads = 4; static int counter; static Object barrier;
private int no;

public Example2(int no) {
this.no = no;

}

public void run() {
 synchronized(barrier){
 counter--;
 if(counter == 0){
 System.out.println("Thread "+no+", releasing"); barrier.notifyAll();

}
 else{
 System.out.println("Thread "+no+", waiting"); barrier.wait();

}
 }
 }

 public static void main(String args[]) throws InterruptedException {
 Thread threads[] = new Thread[nbThreads];
 counter = nbThreads; barrier = new Object();

 for(int i = 0; i<nbThreads; i++){
 threads[i] = new Example2(i);

threads[i].start();
 }

 for(int i = 0; i<threads.length; i++)
threads[i].join();

 }
}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 67

Remember

Concurrency is a really hard problem. Be
careful when using shared objects among
threads.

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 68

Future Outline

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI -based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 69

References

This lecture is built from:

 Sun Microsystems. Java Tutorial on Networking.
http://java.sun.com/docs/books/tutorial/networking/

 Sun Microsystems. Java Tutorial on Concurrency.
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

 M. Boger. Java in Distributed Systems: Concurrency, Distribution and
Persistence. Wiley, 2001.

 This lecture is mostly based on lectures given by Sara Bouchenak,
http://sardes.inrialpes.fr/~bouchena/

