
IBD – Intergiciels et
Bases de Données

Socket-based distributed systems

Fabien Gaud, Fabien.Gaud@inrialpes.fr

http://www-ufrima.imag.fr/ Placard électronique M1 Info IBD

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 2

Client/server applications

 A server provides some services
 Examples

 processing database queries
 sending out current stock prices

 A client uses some services provided by a server
 Examples

 displaying database query results to the user
 making stock purchase recommendations to an investor

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 3

Client/server applications (2)

 Synchronous communication

client

Computer 1

server

Computer 2

Communication system

1. request

2. service
execution

3. response

Web server
(e.g. Apache)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 4

Protocol layers

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 5

Internet Protocol

 IP (Internet Protocol)
 The Internet is not the Web
 Corresponds to the network layer of the OSI model
 Addressing, routing and transport of data packets

 IP addresses are names
 4 bytes, naming a host machine (e.g. 192.168.2.100)
 IP addresses are location dependent

 IP Routing on LANs
 Physical layer directly provides this

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 6

The Internet

router

router

router

router

Cross-network Routes

router

router

 IP Routing on WANs
 It is a collaborative and distributed protocol between routers
 Routers exchange their routing tables to build up their routing

knowledge

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 7

Ports

 Ports are end points
 For communication channels over IP
 An IP address and a port names an end point

 Port numbers are managed by the operating system
 Many important services have a standardized port
 Example: port 25 for telnet service
 Port between 1 and 1023 are reserved

 Port numbers are allocated on-demand to processes
 A telnet service provider will be allocated the port 25
 Only one process may be allocated the port 25

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 8

Ports (2)

 Communication Channel
 Between two ports, allocated to two processes
 Two processes may be on the same machine or not

 Client-Server Pattern
 The server waits for data from the channel
 A client process is allocated a port when establishing the

communication channel to a server

client

Computer 1

server

Computer 2

Communication system

client

Computer 1

server

Computer 2

Communication system

Web server
(e.g. Apache)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 9

Sockets

 Basic Middleware
 A programming model based on streams
 A behavior semantics (UDP,TCP, ...)

 Programming Model
 A socket is the endpoint of a communication channel
 A socket represents a port allocated to a process on a machine
 Through a stream interface, one may send/receive bytes through a

socket

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 10

Sockets – Steps Involved

 Server side
 Creation of the server process

 Request a socket on a port
 The local port is granted by the operating system

 Server waits for incoming data

Server Machine

"server socket "

4320

"server port"

"server process"

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 11

Sockets – Steps Involved

 Client side
 Creation of the client process
 Request a channel to the remote port

 A local port is allocated
 The communication channel is established

 The two sockets are connected to each other
 Client sends/receives data

Client Machine

"client socket "

36243

"client proces "

Server Machine

"server socket "

4320

"server port"

"server process"

"client port"

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 12

User Datagram Protocol

 UDP (User Datagram Protocol)
 Over IP that routes data packets

 Data packets are of fixed size
 But different sizes for 100Mbps or 1Gbps Ethernet

 WARNING
 Output stream is automatically sliced into data packets
 Data packets may be lost or reordered
 But very efficient (just an IP++)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 13

Transmission Control Protocol

 TCP (Transmission Control Protocol)
 Also above IP, but it is lossless and FIFO

 Lossless: data packets are not lost
 FIFO: data packets are delivered in the order they were sent

 Can be used as a real stream
 Bytes can be streamed through
 Bytes will not be lost and arrive in the same order

 A connection-oriented protocol
 An actual point-to-point connection needs to be opened and closed
 Connections introduce an overhead

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 14

UDP and TCP

 Typical applications
 UDP

 Require high bandwidth, can accept loss or reordering
 Examples:

 Transmission of video/sound in real time
 Out of sequence or incomplete frames are just dropped

 Other more complex communication protocols
 Such as totally-ordered multicast using Lamport's logical clocks

 TCP
 Transferring files (ftp for instance)
 Downloading web pages or images

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 15

Sockets – A bit of history

 Originally
 Sockets were developed for BSD Unix, in the 1980s
 Sockets used to be part of the operating system; they had to be

invoked via system-specific libraries for C/C++
 Programming distributed applications was hard (access was

different from one OS to another, programs were not portable)

 Today
 Sockets are available on all platforms and represent the most

fundamental communication mechanism
 Example: the Java programming interface for sockets abstracts

them from the underlying OS, making them easier to use

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 16

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 17

Addressing in Java

 The java.net package provides the following
addressing-related classes:

 InetAddress
 Inet4Address
 Inet6Address

 SocketAddress
 InetSocketAddress

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 18

IP addressing in Java

 For IP addressing, three classes are provided:
 InetAddress represents an IP address
 Inet4Address represents a 32-bit IPv4 address
 Inet6Addresss represents a 128-bit IPv6 address

InetAddress

Inet6AddressInet4Address

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 19

IP addressing in Java

 InetAddress Class
 Represents an IP address

 Either a 32- or 128-bit unsigned number used by IP
 No public constructor

 static InetAddress getLocalHost()
 Returns the local host

 static InetAddress getByName(String hostname);
 Lookup a host machine by name

 Some API elements
 String getHostAddress()

 Returns the IP address string in textual presentation.
 String getHostName()

 Gets the host name for this IP address.
 E.g. hoff.e.ejf-grenoble.fr

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 20

IP addressing in Java

 Inet4Address
 Represents a 32-bit IPv4 address

 Some API elements
 byte[] getAddress()

 Returns the raw IP address of this InetAddress object
 String getHostAddress()

 Returns the IP address string in textual presentation form
 Familiar form (a.b.c.d), e.g. 129.250.35.250

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 21

IP addressing in Java

 Host name to IP address resolution
 Using a network naming service

 DNS (Domain Name System)
 NIS (Network Information Service)

 Discussing DNS
 A fairly complex world-wide distributed system

 Associate names to IP addresses
 Allows aliases (one IP address, several names)

 Organized as hierarchical zones across the world
 A zone is managed by a DNS server

 Replicated servers for high-availability

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 22

Socket addressing in Java

 SocketAddress
 Abstract class for a socket address
 Independent of any specific addressing protocol

 InetSocketAddress
 It represents a socket address over IP
 Essentially an IP address and a port

 For example 129.250.35.250 and port 80
 A hostname can be used instead of an IP address

 It will be looked up using InetAddress.getByName(String)

SocketAddress

InetSocketAddress

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 23

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 24

Java Sockets over TCP

 General Schema
 A connection is opened between a client and a server,
 A series of request/response (i.e. messages) are exchanged
 The connection is closed

 Server-side Session
 Servers often maintain a session per client

 Each session maintains the state of client-server interaction
 A typical example is HTTP sessions

 Remember
 TCP is a loss-less and FIFO protocol

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 25

Java classes related to TCP sockets

 The java.net package provides
 ServerSocket class
 Socket class

 ServerSocket
 It represents the socket on a server
 Servers accept incoming connections

 Socket
 It represents the endpoints
 Both on server and client sides

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 26

Example of Java sockets/TCP

import java.net.*;

int port = 1234;

// Create a server socket associated with port 1234

ServerSocket server = new ServerSocket(port);

// End-less loop

while (true) {

System.out.println("Waiting for client…");

// Server waits for a connection

Socket client = server.accept();

// A client connected

System.out.println("Client " + client.getInetAddress() +
" connected.");

// Server receives a message from client

...

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 27

import java.net.*;

int port = 1234;

// Create a server socket associated with port 1234

ServerSocket server = new ServerSocket(port);

// End-less loop

while (true) {

System.out.println("Waiting for client…");

// Server waits for a connection

Socket client = server.accept();

// A client connected

System.out.println("Client " +
client.getInetAddress() + " connected.");

// Server receives a message from client

...

}

Example of Java sockets/TCP

import java.net.*;

String serverHost = "sun";

int serverPort = 1234;

// Client connects to server

Socket server;

server = new Socket(serverHost,serverPort);

// Client connected

System.out.println("Connected to " +
server.getInetAddress());

// Client sends a message to server

...

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 28

Streams

 Definition
 Streams are an abstraction for arbitrary data streams
 Input streams used to receive (i.e. read) bytes
 Output streams used to send (i.e. write) bytes

 Examples
 Streams from/to a socket
 Streams from/to a file
 Streams from/to the console

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 29

Streams in Java

 The java.io package contains the following classes related to streams:
 InputStream / OutputStream

 abstract classes that respectively represent input streams of bytes and output
streams of bytes

 ObjectInputStream / ObjectOutputStream
 classes respectively representing input streams of Java objects and output

streams of Java objects

 FileInputStream / FileOutputStream
 classes representing input streams for respectively reading data from a file ou

writing data to a file

 FilterInputStream / FilterOutputStream
 classes that respectively contain other input streams or output streams, which

it uses to possibly transform data along the way

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 30

Java Sockets and Streams

import java.io.*;

...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();

// A client connected
System.out.println("Client " + client.getInetAddress() + " connected.");

// Get the server’s output stream
OutputStream os = client.getOutputStream();

// Build data and transform it to bytes
Date date = new Date();
byte[] b = date.toString().getBytes();

// Write in output stream
os.write(b);

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 31

import java.io.*;

...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();

// Get the server’s output stream
OutputStream os = client.getOutputStream();

// Build data and transform it to bytes
Date date = new Date();
byte[] b = date.toString().getBytes();

// Write in output stream
os.write(b);

}

Java Sockets and Streams

import java.io.*;

...
// Client connects to server
Socket server = new Socket(serverHost, serverPort);

// Get the client’s input stream
InputStream is = server.getInputStream();

// Read data from input stream
byte[] b = new byte[100];
int num = is.read(b);

// Transform data from bytes to String
String date = new String(b);
System.out.println("Server said: " + date);

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 32

Java Sockets and Streams

// Get the server's output stream
OutputStream os = client.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// Get the client’s input stream
InputStream is = server.getInputStream();
byte[] b = new byte[100];
int num = is.read(b);
String date = new String(b);

Correct?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 33

Java Sockets and Streams

// Get the server's output stream
OutputStream os = client.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// Get the client’s input stream
InputStream is = server.getInputStream();
byte[] b = new byte[100];
int num = is.read(b);
String date = new String(b);

 Maybe, Maybe Not
 Assumes:

 Nothing is left in the input stream
before reading

 The entire string has been
received when reading

 Just not always true
 Some previous read might have

left something...
 Beware of IP data packets...

Socket stream

IP packets

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 34

Java Sockets and Streams

// Get the server's output stream
OutputStream os = client.getOutputStream();
Date date = new Date();
byte[] b = date.toString().getBytes();
os.write(b);

// Get the client’s input stream
InputStream is = server.getInputStream();
byte[] b = new byte[100];
int num = is.read(b);
String date = new String(b);

Correct?

 Maybe, Maybe Not
 Assumes:

 Nothing is left in the input stream
before reading

 The entire string has been
received when reading

 Just not always true
 When sending variable length

data structures, send the length
 How?

 Length is an integer
 We can send bytes

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 35

Java Sockets and Streams

// Get the server's output stream
OutputStream os;
DataOutputStream dos;
os = client.getOutputStream();
dos = new DataOutputStream(os);

Date date = new Date();
byte[] b = date.toString().getBytes();
dos.writeInt(b.length);
dos.write(b);

// Get the client’s input stream
InputStream is;
DataInputStream dis;
is = server.getInputStream();
dis = new DataInputStream(is);
int length = dis.readInt();
byte[] b = new byte[length];
int num = dis.read(b,0,length);
String date = new String(b);

 DataOutputStream
 Extends FilterOutputStream
 Provides type-aware operations
 Endianness proof !
 But introduces an overhead

 Solution
 Sending the length Correct?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 36

Java Sockets and Streams

// Get the server's output stream
OutputStream os;
DataOutputStream dos;
os = client.getOutputStream();
dos = new DataOutputStream(os);

Date date = new Date();
String str = date.toString();
dos.writeUTF(str);

// Get the client’s input stream
InputStream is;
DataInputStream dis;
is = server.getInputStream();
dis = new DataInputStream(is);
String date = dis.readUTF();

 String Encoding...
 Depends on your string encoding...

 Better to use UTF-8
 DataOutputStream.writeUTF(b)

 How about now?
 Yes, but keep in mind that any

variable length data structure needs
to be prefixed with its length... Correct?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 37

Java Sockets and Streams

import java.io.*;
...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();

// A client connected
System.out.println("Client " + client.getInetAddress() + " connected.");

// Get the server’s output stream
OutputStream os = client.getOutputStream();
// Get the associated object output stream
ObjectOutputStream oos = new ObjectOutputStream(os);

// Write object in output stream
Date date = new Date();
oos.writeObject(date);
// Close output stream
oos.close();

}

We could also use Java Object streams...

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 38

import java.io.*;
...
// End-less loop
while (true) {

System.out.println("Waiting for client…");
// Server waits for a connection
Socket client = server.accept();
// A client connected
System.out.println("Client " + client.getInetAddress() + " connected.");
// Get the server’s output stream
OutputStream os = client.getOutputStream();
// Get the associated object output //stream
ObjectOutputStream oos = new

ObjectOutputStream(os);
// Write object in output stream
Date date = new Date();
oos.writeObject(date);
// Close output stream
oos.close();

}

Java Object Streams

import java.io.*;

...
// Client connects to server
Socket server = new Socket(serverHost,

serverPort);
// Client connected
System.out.println("Connected to " +

server.getInetAddress());

// Get the client’s input stream
InputStream is = server.getInputStream();
// Get the associated object input stream
ObjectInputStream ois = new

ObjectInputStream(is);

// Read object from input stream
Date date = (Date) ois.readObject();

System.out.println("Server said: " +
date);

// Close input stream
ois.close();

Looking at both server and client sides...

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 39

Java Object Streams

 Based on the Java Serialization framework
 Any class may implement the Serializable interface
 If it does, instances of that class can be serialized
 Serialization is a deep copy

 Recursive serialization along object references
 Sharing is respected

 Warning
 Deep copy does not stop by itself

 If any object encountered is not serializable, an exception is thrown
 Most JRE classes are serializable

 Possible control point
 References in classes may be declared transient (easy)
 Redefine how instances of a class are serialized (harder)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 40

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 41

Java sockets over UDP

 Networking in the unconnected mode (using UDP)
 Some applications that communicate over the network do not require

reliable, point-to-point channel provided by TCP

 Applications might benefit from a mode of communication that delivers
independent packages of information whose arrival and order of arrival
are not guaranteed

 UDP protocol provides a mode of network communication whereby
applications send packets of data, called datagrams, to one another.

 A datagram is an independent self-contained message sent over the
network whose arrival, arrival time, and order are not guaranteed.

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 42

Java classes related to UDP

 java.net.DatagramPacket
 Represents a data packet

 Essentially a byte buffer
 Maximum buffer length is known by calling

DatagramSocket. getReceiveBufferSize()

 Includes an InetAddress and port number

 java.net.DatagramSocket
 Used for sending and receiving datagram packets
 Communication happens over UDP

 Send a DatagramPacket by calling send on a DatagramSocket
 Receive a DatagramPacket by calling receive on a DatagramSocket

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 43

Example of Java sockets/UDP

import java.net.*;

int port = 1234;
// Create a datagram socket associated
// with the server port
DatagramSocket serverSock = new DatagramSocket(port);
// End-less loop
while (true) {

System.out.println("Waiting for client packet…");
byte[] buf = new byte[256];
// Create a datagram packet
DatagramPacket packet = new
DatagramPacket(buf, buf.length);

// Wait for a packet
 serverSock.receive(packet);

// Get client IP address and port number
InetAddress clientAddr = packet.getAddress(); int clientPort = packet.getPort();
// Build a response
initialize buf ...
// Build a datagram packet for response
packet = new DatagramPacket(buf, buf.length, clientAddr, clientPort);
// Send a response
serverSock.send(packet);

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 44

import java.net.*;

int port = 1234;
// Create a datagram socket associated
// with the server port
DatagramSocket serverSock = new DatagramSocket(port);
// End-less loop
while (true) {

System.out.println("Waiting for client packet…");
byte[] buf = new byte[256];
// Create a datagram packet
DatagramPacket packet = new

DatagramPacket(buf, buf.length);
// Wait for a packet
 serverSock.receive(packet);

// Get client IP address and port number
InetAddress clientAddr = packet.getAddress(); int clientPort = packet.getPort();
// Build a response
initialize buf ...
// Build a datagram packet for response
packet = new DatagramPacket(buf, buf.length, clientAddr, clientPort);
// Send a response
serverSock.send(packet);

}

Example of Java sockets/UDP

import java.net.*;

int serverPort = 1234;
String serverHost = ...;

// Create a datagram socket
DatagramSocket clientSock = new DatagramSocket();

byte[] buf = new byte[256];
// Get server’s IP address
InetAddress serverAddr =

InetAddress.getByName(serverHost);
// Build a request
initialize buf ...
// Create a datagram packet destined for the
// server
DatagramPacket packet = new DatagramPacket(buf,

buf.length, serverAddr, serverPort);
// Send datagram packet to server
clientSock.send(packet);

// Build a datagram packet for response
packet = new DatagramPacket(buf, buf.length);
// Receive response
clientSock.receive(packet);
String received = new String(packet.getData(), 0,

packet.getLength());
System.out.println("Response: " + received);

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 45

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 46

Java Multicast

 Based on UDP Sockets
 DatagramPacket (same as before)
 MulticastSocket extends DatagramSocket

 Relies on IP-level multicast
 Multicast IP addresses

 Class D addresses are reserved for multicast
 In the range 224.0.0.0 to 239.255.255.255

 A multicast group
 A multicast address and a port

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 47

Java Multicast

 Multicasting to a group
 Needs to create a DatagramPacket
 Destination is the group InetAddress and port
 Normal UDP send

 Joining a multicast group
 Create the MulticastSocket with the group port
 Needs to join the multicast group, use the group InetAddress
 Receives messages multicasted to the group

 Leaving a multicast group
 Explicit departure from a multicast group

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 48

Java Multicast – Receiving

// Import some needed classes
import sun.net.*;
import java.net.*;

// Multicast group
int groupPort = 5000;
InetAddress groupAddr = InetAddress.getByName("225.4.5.6");

// Create the socket
MulticastSocket s = new MulticastSocket(groupPort);
s.joinGroup(groupAddr);

// Create a DatagramPacket and do a receive
DatagramPacket pack;
byte buf[] = byte[1024];
pack = new DatagramPacket(buf, buf.length);

s.receive(pack);

// When done...
// leave the multicast group and close the socket
s.leaveGroup(InetAddress.getByName(group));
s.close();

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 49

Java Multicast – Sending
import sun.net.*;
import java.net.*;

// Multicast group
int groupPort = 5000;
InetAddress groupAddr = InetAddress.getByName("225.4.5.6");

// Create the socket
// but we don't bind it and we don't join the multicast
group
// as we are only going to send data
MulticastSocket s = new MulticastSocket();

byte buf[] = byte[10];
for (int i=0; i<buf.length; i++) buf[i] = (byte)i;

// Create a DatagramPacket
DatagramPacket pack = new DatagramPacket(buf, buf.length,

groupAddr, groupPort);
// Do a send.
byte ttl = 1;
s.send(pack,ttl);

// And when we have finished sending data close the socket
s.close();

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 50

Java Multicast

 Caveats
 IP Multicast is supported by many routers

 But most Internet providers forbid IP Multicast
 Over the public Internet, multicast is simply not available

 Usable on local LANs however

 Middleware Multicast
 Multicast can be built above IP or UDP

 Using point-to-point messages

 Middleware provides
 Group management and membership to groups

 From simple groups to publish-subscribe topics
 Other multicast properties

 Totally-ordered multicast, reliable multicast

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 51

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 52

Network Resources

 Examples of network resources
 An image, audio file available on the network
 A program file, such as a Servlet, available on the network

 Java classes related to locating or identifying network
resources (c.f. package java.net)
 URI
 URL
 URLClassLoader
 URLConnection
 URLStreamHandler
 HttpURLConnection
 JarURLConnection

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 53

Network Resources

 URI – Uniform Resource Identifier
 It is an identifier for a resource
 But not necessarily a locator for that resource

 URL – Uniform Resource Locator
 A URL tells how to access the resource
 The protocol used to locate the resource is known from the URL

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 54

Network Resources

 A URL is a pointer to a "resource" on the World Wide Web
 Example of a URL:

 http : //java.sun.com
 A URL has two main components:

 Protocol identifier
 Hypertext Transfer Protocol (HTTP)
 File Transfer Protocol (FTP)

 Resource name
 The name format depends entirely on the protocol used

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 55

Network Resources

 More URL Names
 The format of the resource name depends entirely on the protocol

used
 For many protocols, including HTTP, the resource name contains

one or more of the components listed below:
 Host Name: the name of the machine on which the resource lives.
 Port Number: the port number to which to connect (typically optional).
 Filename: the pathname to the file on the machine.
 Reference: a reference to a named anchor within a resource that

usually identifies a specific location within a file (typically optional).

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 56

Network Resources

 URLConnection
 Abstract superclass of all connection classes
 Used by applications to identify and locate network resources
 Usage:

 Obtain a URLConnection from a URL
 static URLConnection URL.openConnection()

 Connect
 URLConnection.connect() actually opens the connection
 URLConneciton.getInputStream() to read the resource

 HttpURLConnection
 It is the most commonly used implementation
 It uses the HTTP protocol

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 57

Outline

 Introduction to sockets

 Addressing

 Point-to-point communication with TCP sockets

 Point-to-point communication with UDP sockets

 Group communication with multicast

 Locating network resources

 Threads in JAVA

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 58

Threads in JAVA

 Integrated into the language
 Creation / Execution
 Synchronization mechanisms

 One process, the JVM

 User vs Kernel threads

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 59

Thread states

 A thread can be in different states

See Thread.State for details

Created Blocked

Dead Executing

Ready

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 60

Thread objects

 Two ways
 Extends Thread
 Implements Runnable

This example taken from Java Thread tutorial

public class HelloThread extends Thread {

 public void run() {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[]) {
 (new HelloThread()).start();
 }

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 61

Thread objects (2)

 Another way is to use the Runnable interface

 Be careful, directly calling the run method does not create a
thread

public class HelloRunnable implements Runnable {

 public void run() {
 System.out.println("Hello from a thread!");
 }

 public static void main(String args[]) {
 (new Thread(new HelloRunnable())).start();
 }

}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 62

Another Example

public class Counter {
private int counter;
public Counter (int c){

counter = c;
}
void increment(){

counter++;
}
void decrement(){

counter--;
}
int getCounter(){

return counter;
}

}

public class Example extends Thread {
private int no;
private Counter c;

public Example(int no, Counter c) {
this.no = no; this.c = c;

}
public void run() {

 try {
Thread.sleep(100);
if((no % 2) == 0)

c.increment();
else

c.decrement();
}
catch (InterruptedException e) {

// Handling
}

 }
 public static void main(String args[])

throws InterruptedException {
 Counter c = new Counter(0);

Thread T1 = new Example(0,c);
Thread T2 = new Example(1,c);
T1.start();
T2.start();
T1.join();
T2.join();

 System.out.println("Counter = " + c.getCounter());
 }
}

Correct ?

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 63

Another Example (2)

 Results on 10 iterations

 ++ / -- are not atomic operations

 Concurrent accesses to a shared memory need protecting it

Counter = -1
Counter = 0
Counter = 0
Counter = 0
Counter = -1
Counter = 0
Counter = 0
Counter = 1
Counter = 0
Counter = 0

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 64

The synchronized keyword

 Synchronization is based on monitors

 The synchronized keyword permits to set critical sections

 The synchronized keyword applies on an object

 Possibility to wait() on a condition and to notify() a waiter

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 65

Synchronized example
public class Counter {

private int counter;
public Counter (int c){

counter = c;
}
synchronized void increment(){

counter++;
}
synchronized void decrement(){

counter--;
}
synchronized int getCounter(){

return counter;
}

}

public class Counter {
private int counter;
public Counter (int c){

counter = c;
}
void increment(){

synchronized (this) {
counter++;

}
}
void decrement(){

synchronized (this) {
counter--;

}
}
int getCounter(){

synchronized (this) {
return counter;

}
}

}

[...]
if((no % 2) == 0){

synchronized (c) {
c.increment();

}
}
else{

synchronized (c) {
c.decrement();

}
}

[...]

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 66

Another synchronization example
public class Example2 extends Thread {

final static int nbThreads = 4; static int counter; static Object barrier;
private int no;

public Example2(int no) {
this.no = no;

}

public void run() {
 synchronized(barrier){
 counter--;
 if(counter == 0){
 System.out.println("Thread "+no+", releasing"); barrier.notifyAll();

}
 else{
 System.out.println("Thread "+no+", waiting"); barrier.wait();

}
 }
 }

 public static void main(String args[]) throws InterruptedException {
 Thread threads[] = new Thread[nbThreads];
 counter = nbThreads; barrier = new Object();

 for(int i = 0; i<nbThreads; i++){
 threads[i] = new Example2(i);

threads[i].start();
 }

 for(int i = 0; i<threads.length; i++)
threads[i].join();

 }
}

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 67

Remember

Concurrency is a really hard problem. Be
careful when using shared objects among
threads.

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 68

Future Outline

 Lectures
 Introduction to distributed systems and middleware
 Socket-based distributed systems
 RMI -based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with Sockets
 Programming distributed systems with RMI
 Programming distributed systems with Servlets
 Project on multi-tier Internet services

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 69

References

This lecture is built from:

 Sun Microsystems. Java Tutorial on Networking.
http://java.sun.com/docs/books/tutorial/networking/

 Sun Microsystems. Java Tutorial on Concurrency.
http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html

 M. Boger. Java in Distributed Systems: Concurrency, Distribution and
Persistence. Wiley, 2001.

 This lecture is mostly based on lectures given by Sara Bouchenak,
http://sardes.inrialpes.fr/~bouchena/

