
IBD – Intergiciels et
Bases de Données

Introduction

Fabien Gaud, fabien.gaud@inria.fr

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 2

Objectives

 Introduction to distributed systems and middleware

 Conceptual and practical aspects of distributed systems and
middleware

 Illustration through current distributed systems, e.g. web
systems, database systems

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 3

Professors

 Middleware and distributed systems

 Fabien Gaud (Fabien.Gaud@inria.fr)
 Vivien Quema (Vivien.Quema@inria.fr)

 Database systems

 Goran Frehse (Goran.Frehse@imag.fr)
 Renaud Lachaize (Renaud.Lachaize@inria.fr)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 4

Organization

Week date Wednesday 13:30 – 15:00 Wednesday 15:15 – 16:45

03/02 Lecture 1 on Middleware Lecture 2 on Middleware

10/02 Lecture 1 on DB

24/02 Lecture 3 on Middleware Practical work 1 on Middleware

03/03 Lecture 4 on Middleware Practical work 1 on Middleware

10/03 Lecture 2 on DB Lecture 5 on Middleware

17/03 Practical work 1 on DB Practical work 2 on DB

22/03 Projet Projet

31/03 Projet Projet

07/04

21/04 Projet Projet

28/04 Soutenance Projet Soutenance Projet

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 5

Organization

 Prerequisites

 Java programming
 Networking principles
 Structured query language (SQL)

 Perspectives

 Master 2 Professional
 M2P – GI

 Master 2 Research
 M2R – Distributed Systems
 M2R – Database systems
 M2R – Information systems

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 6

Web site and evaluation

 Web site

 http://www-ufrima.imag.fr/ ⇒ Intranet ⇒ Services pédagogiques ⇒
Placard électronique ⇒ M1 Info ⇒ IBD

 Evaluation

 Mid-term evaluation
 A project on middleware, distributed systems and database systems
 Demonstration of project results
 Evaluation of the demonstration

 Final evaluation
 Final exam

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 7

Outline of lectures and practical work
on middleware

 Lectures

 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work

 Programming distributed systems with RMI

 Project on multi-tier Internet services

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 8

Outline

 Objectives and organization

 What is a distributed system ?

 What is a middleware ?

 Conclusion

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 9

What is a distributed system

Execution
entity

(process 1)

Computer 1

Execution
entity

(process 2)

Computer 2

Communication system

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 10

Example of distributed systems

 Client - Server

Client Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 11

Example of distributed systems

 Multi-Tier

Client Server

Server

Server

Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 12

Example of distributed systems

 Peer to peer

Client

Client

Client

Client

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 13

Distributed systems

 Advantages

 Storage/Computation capacity
 Scalability
 Fault tolerance

 Points to consider

 Security
 Failure
 Synchronization
 Heterogeneity

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 14

Communication mechanisms in a
distributed system

 Direct

 Program to program
 E.g. remote procedure call

 Program to database
 E.g. distributed transaction processing

 Indirect

 Message queuing

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 15

Communication mechanisms in a
distributed system

 Remote procedure call (e.g. a web application)

Execution
entity

(process 1)

Computer 1

Execution
entity

(process 2)

Computer 2

Communication system

1. request

3. Response

2. procedure
execution

Web server
(e.g. Apache)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 16

Communication mechanisms in a
distributed system

 Distributed transaction processing (e.g. a database server)

Execution
entity

(process 1)

Computer 1

Execution
entity

(process 2)

Computer 2

Communication system

database

Database management
system (e.g. Oracle)

2. data
processing

1. request

3. Response

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 17

Communication mechanisms in a
distributed system

 Message queuing (e.g. a chat system)

Execution
entity

(process 1)

Computer 1

Execution
entity

(process 2)

Computer 2

Communication systemput message M3

M2 M1M3 M2 M1

get a message

M4 M3 M2 M1

put message M4

Message-oriented
middleware (e.g. JMS)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 18

Communication mechanisms in
distributed systems - perspectives

 Direct
 Program to program

 E.g. remote procedure call

 Program to database
 E.g. distributed transaction processing

 Indirect
 Message queuing

M1 Info – IBD – “I” Part

M1 Info – IBD – “BD” Part

M2P GI – Dist. Sys.
M2R Info – sp. SAR – Dist. Sys.

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 19

Outline

 Objectives and organization

 What is a distributed system ?
 Communication mechanisms in distributed systems
 Services and interfaces in computing systems
 Client/server architecture

 What is a middleware ?

 Conclusion

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 20

Services and interfaces in a
computing system

 Service definition

 A computing system is a set of (hardware and software) components
 A component provides a service

 Interface definition

 A service is accessible via one or several interfaces
 An interface defines the interaction between a service provider and its

client

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 21

Interfaces (1/2)

Service provider Service client

contract

provided

interface required

interface

conformity

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 22

Interfaces (2/2)

 A service relies on two interfaces

 Required interface (from the service client point of view)
 Provided interface (from service provider point of view)

 Contract

 The contract specifies the conformity between the provided and
required interfaces

 The service client and the service provider are considered as black-
boxes

 The contract may specify aspects that are not related to the
interfaces

 Non-functional properties related to QoS requirements

Service provider Service client

contract

provided

interface required

interface

conformity

Service provider Service client

contract

provided

interface required

interface

conformity

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 23

Examples of important interfaces in
computing systems

physical communication linkmachine

operating
system

communication
system

middleware

application

application interface

middleware interface
(e.g. Java RMI)

OS interface
(e.g. Posix)

machine interface
(e.g. IA32)

transport interface
(e.g. TCP)

physical interface
(e.g. Ethernet)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 24

Outline

 Objectives and organization

 What is a distributed system

 Communication mechanisms in distributed systems
 Services and interfaces in computing systems
 Client/server architecture

 What is a middleware

 Conclusion

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 25

Client/Server architecture (1)

 A server provides some services

 Examples
 Processing database queries
 Offering file system accesses

 A client uses some services provided by a server

 Examples
 Displaying database query results to the user
 Requesting a file

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 26

Client/Server architecture (2)

 Advantages of the client/server architecture

 Structuring
 Separation between the interface of a service and the implementation

of that service
 Based on this separation, the client and server implementations can be

modified as long as the interface is kept unchanged

 Protection/security
 The client and server run in different protection domains

 Resource management
 A server may be shared by several clients

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 27

Client/Server architecture (3)

client

Computer 1

server

Computer 2

Communication system

1. request

2. service
execution

3. response

Web server
(e.g. Apache)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 28

Client/Server architecture (4)

 Communication between the server and the client:

 Can be synchronous or asynchronous
 Use a protocol defining

 The request message:
 Sent by the client to the server
 Specifies the requested service (a server may provide several services)
 Contains parameters of the requested service

 The response message:
 Sent by the server to the client
 Results of service execution, or error message

 The interaction

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 29

Client/Server communication channel

 With low level operations

 Using functions of the communication system
 Example: Sockets

 With high level operations

 Using a middleware
 Example: RMI in object-oriented middleware

 Remote method invocation

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 30

Communication using Sockets

 Ports

 Between two ports, allocated to two processes
 Port numbers are managed by the operating system

 Many important services have a standardized port
 Example: port 80 for HTTP service
 Port between 1 and 1023 are reserved

 Sockets
 A programming model based on streams

 Through a stream interface, one may send/receive bytes through a
socket

 A behavior semantics (UDP,TCP, ...)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 31

Communication using Sockets (2)

 Server side

 Creation of the server process
 Request a socket on a port
 The local port is granted by the operating system

 Server waits for incoming data

Server Machine

"server socket "

80

"server port"

"server process"

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 32

Communication using Sockets (3)

 Client side

 Creation of the client process
 Request a channel to the remote port

 A local port is allocated
 The communication channel is established

 The two sockets are connected to each other
 Client sends/receives data

Client Machine

"client socket "

36243

"client process "

Server Machine

"server socket "

80

"server port"

"server process"

"client port"

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 33

Protocol layers

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 34

Transport level Protocol

 UDP (User Datagram Protocol)

 Over IP that routes data packets
 Output stream is automatically sliced into data packets
 Data packets may be lost or reordered
 But very efficient (just an IP++)

 TCP (Transmission Control Protocol)

 Also above IP, but it is lossless and FIFO
 Lossless: data packets are not lost
 FIFO: data packets are delivered in the order they were sent

 A connection-oriented protocol
 An actual point-to-point connection needs to be opened and closed
 Connections introduce an overhead

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 35

UDP and TCP application example

 Typical applications

 UDP
 Require high bandwidth, can accept loss or reordering
 Examples:

 Transmission of video/sound in real time
 Out of sequence or incomplete frames are just dropped

 Other more complex communication protocols
 Such as totally-ordered multicast using Lamport's logical clocks

 TCP
 Transferring files (ftp for instance)
 Downloading web pages or images

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 36

Server resource management

 A server shared by several clients

 The client point of view

 The server point of view
 Selecting a request among client requests
 Request processing model (sequential or parallel)
 Managing client sessions

client server

request

response

request
processing

request
selection

request queue

client
requests

server
responses

server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 37

Server resource management (2)

 Several requests may be processed concurrently by the server
 Real parallelism (e.g. multiprocessors, I/O)
 Pseudo-parallelism

 Concurrency may take the form of:
 multiple processes, or
 multiple threads, or
 Finite State Machine (FSM)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 38

Service resource management (3)

 Threads

 Advantages
 Lighter than processes
 Memory sharing

 Drawbacks
 Be careful with memory mutual accesses

 Processes

 Advantages
 Memory isolation

 Drawbacks
 Heavy
 No shared memory

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 39

Single threaded server

 Server resource management – A unique thread

while (true) {

 receive(client_id,message);

 extract(message, service_id, params);

 results = do_service(service_id, params);

 send(client_id, results);

}

request
processing

request
selection

request queue

client
requests server

response

server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 40

Multi-threaded server

 Server resource management – Multiple threads

while (true) {

 receive(client_id,message);

 extract(message, service_id,
 params);

 thr = create_thread(client_id,

 service_id,params);

}

request
selection

request queue

main thread

Program executed by thread:

 results = do_service(
 service_id, params);

 send(client_id, results);

 exit

client
requests

response

worker thread

request
processing

server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 41

Multi-threaded server (2)

 Server resource management – A pool of threads

request
selection

request queue

main thread

worker thread

request
processing

worker thread

request
processing

client
requests

response

worker thread

request
processing

server

work_to_do

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 42

Multi-threaded server (3)

 Server resource management – A pool of thread

while (true) {

 receive(client_id,message);

 extract(message, service_id,
 params);

 work_to_do.put(client_id,
 service_id,params);

}

Pool of threads:

while (true) {

 work_to_do.get(
 client_id, service_id,
 params);

 results = do_service(
 service_id, params);

 send(client_id, results);

}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 43

Event-based server

 Server resource management – A FSM

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 44

Outline

 Objectives and organization

 What is a distributed system ?

 Communication mechanisms in distributed systems
 Services and interfaces in computing systems
 Client/server architecture

 What is a middleware ?

 Conclusion

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 45

What is a middleware

physical communication link

operating
system

machinemachine

operating
system

communication
system

middleware middleware

applicationapplication

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 46

Functions of a middleware

 A middleware has mainly four functions :

1) Make distribution as invisible (transparent) as possible

2) Provide a homogeneous view of underlying heterogeneous hardware
and software systems

3) Provide services of common use for distributed systems

4) Provide a high-level interface or API (Applications Programming
Interface) for programming distributed applications

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 47

Middleware for distributed systems

 Middleware aims at simplifying programming distributed
systems

 Implementation, evolution and reuse of applications code

 Inter-platform portability of applications

 Interoperability between heterogeneous applications

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 48

Middleware layers

 OS

 JVM

 RMI

 Servlet / JSP

 Sun J2EE / EJB

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 49

Incoming lectures and practical work
on middleware

 Lectures

 Introduction to distributed systems and middleware
 RMI -based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

