
IBD – Intergiciels et 
Bases de Données

Introduction

Fabien Gaud, fabien.gaud@inria.fr

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 2

Objectives

 Introduction to distributed systems and middleware

 Conceptual and practical aspects of distributed systems and 
middleware

 Illustration through current distributed systems, e.g. web 
systems, database systems

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 3

Professors

 Middleware and distributed systems

 Fabien Gaud (Fabien.Gaud@inria.fr)
 Vivien Quema (Vivien.Quema@inria.fr)

 Database systems

 Goran Frehse (Goran.Frehse@imag.fr)
 Renaud Lachaize (Renaud.Lachaize@inria.fr)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 4

Organization

Week date Wednesday 13:30 – 15:00 Wednesday 15:15 – 16:45

03/02 Lecture 1 on Middleware Lecture 2 on Middleware

10/02 Lecture 1 on DB

24/02 Lecture 3 on Middleware Practical work 1 on Middleware

03/03 Lecture 4 on Middleware Practical work 1 on Middleware

10/03 Lecture 2 on DB Lecture 5 on Middleware

17/03 Practical work 1 on DB Practical work 2 on DB

22/03 Projet Projet

31/03 Projet Projet

07/04

21/04 Projet Projet

28/04 Soutenance Projet Soutenance Projet



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 5

Organization

 Prerequisites

 Java programming
 Networking principles
 Structured query language (SQL)

 Perspectives

 Master 2 Professional
 M2P – GI

 Master 2 Research
 M2R – Distributed Systems
 M2R – Database systems
 M2R – Information systems

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 6

Web site and evaluation

 Web site

 http://www-ufrima.imag.fr/ ⇒ Intranet ⇒ Services pédagogiques ⇒ 
Placard électronique ⇒ M1 Info ⇒ IBD

 Evaluation

 Mid-term evaluation
 A project on middleware, distributed systems and database systems
 Demonstration of project results
 Evaluation of the demonstration

 Final evaluation
 Final exam

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 7

Outline of lectures and practical work 
on middleware

 Lectures

 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services 

 Practical work

 Programming distributed systems with RMI

 Project on multi-tier Internet services 

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 8

Outline

 Objectives and organization

 What is a distributed system ?

 What is a middleware ?

 Conclusion



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 9

What is a distributed system

Execution 
entity 

(process 1)

Computer 1

Execution 
entity 

(process 2)

Computer 2

Communication system

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 10

Example of distributed systems

 Client - Server

Client Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 11

Example of distributed systems

 Multi-Tier

Client Server

Server

Server

Server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 12

Example of distributed systems

 Peer to peer

Client

Client

Client

Client



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 13

Distributed systems

 Advantages

 Storage/Computation capacity
 Scalability
 Fault tolerance

 Points to consider

 Security
 Failure
 Synchronization
 Heterogeneity

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 14

Communication mechanisms in a 
distributed system

 Direct

 Program to program
 E.g. remote procedure call

 Program to database
 E.g. distributed transaction processing

 Indirect

 Message queuing

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 15

Communication mechanisms in a 
distributed system

 Remote procedure call (e.g. a web application)

Execution 
entity 

(process 1)

Computer 1

Execution 
entity 

(process 2)

Computer 2

Communication system

1. request

3. Response

2. procedure 
execution

Web server 
(e.g. Apache)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 16

Communication mechanisms in a 
distributed system

 Distributed transaction processing (e.g. a database server) 

Execution 
entity 

(process 1)

Computer 1

Execution 
entity 

(process 2)

Computer 2

Communication system

database

Database management 
system (e.g. Oracle)

2. data 
processing

1. request

3. Response



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 17

Communication mechanisms in a 
distributed system

 Message queuing (e.g. a chat system)

Execution 
entity 

(process 1)

Computer 1

Execution 
entity 

(process 2)

Computer 2

Communication systemput message M3

M2 M1M3 M2 M1

get a message

M4 M3 M2 M1

put  message M4

Message-oriented 
middleware (e.g. JMS)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 18

Communication mechanisms in 
distributed systems - perspectives

 Direct
 Program to program

 E.g. remote procedure call

 Program to database
 E.g. distributed transaction processing

 Indirect
 Message queuing

M1 Info – IBD – “I” Part

M1 Info – IBD – “BD” Part

M2P GI – Dist. Sys.
M2R Info – sp. SAR – Dist. Sys.

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 19

Outline

 Objectives and organization

 What is a distributed system ?
 Communication mechanisms in  distributed systems
 Services and interfaces in computing systems
 Client/server architecture

 What is a middleware ?

 Conclusion

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 20

Services and interfaces in a 
computing system

 Service definition

 A computing system is a set of (hardware and software) components
 A component provides a service

 Interface definition

 A service is accessible via one or several interfaces
 An interface defines the interaction between a service provider and its 

client



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 21

Interfaces (1/2)

Service provider Service client

contract

provided 

interface required 

interface

conformity

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 22

Interfaces (2/2)

 A service relies on two interfaces

 Required interface (from the service client point of view)
 Provided interface (from service provider point of view)

 Contract

 The contract specifies the conformity between the provided and 
required interfaces

 The service client and the service provider are considered as black-
boxes

 The contract may specify aspects that are not related to the 
interfaces

 Non-functional properties related to QoS requirements 

Service provider Service client

contract

provided 

interface required 

interface

conformity

Service provider Service client

contract

provided 

interface required 

interface

conformity

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 23

Examples of important interfaces in 
computing systems

physical communication linkmachine

operating 
system

communication 
system

middleware

application

application interface

middleware interface
(e.g. Java RMI)

OS interface 
(e.g. Posix)

machine interface 
(e.g. IA32)

transport interface 
(e.g. TCP)

physical interface 
(e.g. Ethernet)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 24

Outline

 Objectives and organization

 What is a distributed system

 Communication mechanisms in  distributed systems
 Services and interfaces in computing systems
 Client/server architecture

 What is a middleware

 Conclusion



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 25

Client/Server architecture (1)

 A server provides some services

 Examples
 Processing database queries
 Offering file system accesses

 A client uses some services provided by a server

 Examples
 Displaying database query results to the user 
 Requesting a file

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 26

Client/Server architecture (2)

 Advantages of the client/server architecture

 Structuring
 Separation between the interface of a service and the implementation 

of that service
 Based on this separation, the client and server implementations can be 

modified as long as the interface is kept unchanged

 Protection/security
 The client and server run in different protection domains

 Resource management
 A server may be shared by several clients

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 27

Client/Server architecture (3)

client

Computer 1

server

Computer 2

Communication system

1. request

2. service 
execution

3. response

Web server 
(e.g. Apache)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 28

Client/Server architecture (4)

 Communication between the server and the client:

 Can be synchronous or asynchronous
 Use a protocol defining

 The request message: 
 Sent by the client to the server
 Specifies the requested service (a server may provide several services)
 Contains parameters of the requested service

 The response message:
 Sent by the server to the client
 Results of service execution, or error message

 The interaction



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 29

Client/Server communication channel

 With low level operations

 Using functions of the communication system
 Example: Sockets

 With high level operations

 Using a middleware
 Example: RMI in object-oriented middleware

 Remote method invocation

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 30

Communication using Sockets

 Ports

 Between two ports, allocated to two processes
 Port numbers are managed by the operating system

 Many important services have a standardized port
 Example: port 80 for HTTP service
 Port between 1 and 1023 are reserved

 Sockets
 A programming model based on streams

 Through a stream interface, one may send/receive bytes through a 
socket

 A behavior semantics (UDP,TCP, ...)

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 31

Communication using Sockets (2)

 Server side

 Creation of the server process
 Request a socket on a port
 The local port is granted by the operating system

 Server waits for incoming data

Server Machine

"server socket "

80

"server port"

"server process"

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 32

Communication using Sockets (3)

 Client side

 Creation of the client process
 Request a channel to the remote port

 A local port is allocated
 The communication channel is established

 The two sockets are connected to each other
 Client sends/receives data

Client Machine

"client socket "

36243

"client process "

Server Machine

"server socket "

80

"server port"

"server process"

"client port"



F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 33

Protocol layers

Ethernet X.25 ATM PPP Data link layer

Internet Protocol (IP) Network layer

Transmission Control Protocol (TCP) UDP

ftp telnet smtp http nfs

Transport layer

Application layer

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 34

Transport level Protocol

 UDP (User Datagram Protocol)

 Over IP that routes data packets
 Output stream is automatically sliced into data packets
 Data packets may be lost or reordered
 But very efficient (just an IP++)

 TCP (Transmission Control Protocol)

 Also above IP, but it is lossless and FIFO
 Lossless: data packets are not lost
 FIFO: data packets are delivered in the order they were sent

 A connection-oriented protocol
 An actual point-to-point connection needs to be opened and closed
 Connections introduce an overhead

F.Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 35

UDP and TCP application example

 Typical applications 

 UDP
 Require high bandwidth, can accept loss or reordering
 Examples:

 Transmission of video/sound in real time
 Out of sequence or incomplete frames are just dropped

 Other more complex communication protocols
 Such as totally-ordered multicast using Lamport's logical clocks

 TCP
 Transferring files (ftp for instance)
 Downloading web pages or images

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 36

Server resource management

 A server shared by several clients

 The client point of view

 The server point of view
 Selecting a request among client requests
 Request processing model (sequential or parallel)
 Managing client sessions

client server

request

response

request 
processing

request 
selection

request queue

client 
requests

server 
responses

server



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 37

Server resource management (2)

 Several requests may be processed concurrently by the server
 Real parallelism (e.g. multiprocessors, I/O)
 Pseudo-parallelism

 Concurrency may take the form of:
 multiple processes, or
 multiple threads, or
 Finite State Machine (FSM)

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 38

Service resource management (3)

 Threads

 Advantages
 Lighter than processes
 Memory sharing

 Drawbacks
 Be careful with memory mutual accesses

 Processes

 Advantages
 Memory isolation

 Drawbacks
 Heavy
 No shared memory

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 39

Single threaded server

 Server resource management – A unique thread

while (true) {

      receive(client_id,message);

      extract(message, service_id, params);

      results = do_service(service_id, params);

      send(client_id, results);

}

request 
processing

request 
selection

request queue

client 
requests server 

response

server

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 40

Multi-threaded server

 Server resource management – Multiple threads

while (true) {

   receive(client_id,message);

   extract(message, service_id, 
      params);

   thr = create_thread(client_id, 

      service_id,params);

}

request 
selection

request queue

main thread

Program executed by thread:

   results = do_service(
      service_id, params);

   send(client_id, results);

   exit

client 
requests

response

worker thread

request 
processing

server



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 41

Multi-threaded server (2)

 Server resource management – A pool of threads

request 
selection

request queue

main thread

worker thread

request 
processing

worker thread

request 
processing

client 
requests

response

worker thread

request 
processing

server

work_to_do

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 42

Multi-threaded server (3)

 Server resource management – A pool of thread

while (true) {

   receive(client_id,message);

   extract(message, service_id, 
      params);

   work_to_do.put(client_id, 
      service_id,params);

}

Pool of threads:

while (true) {

   work_to_do.get(
      client_id, service_id, 
      params);

   results = do_service(
      service_id, params);

   send(client_id, results);

}

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 43

Event-based server

 Server resource management – A FSM

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 44

Outline

 Objectives and organization

 What is a distributed system ?

 Communication mechanisms in  distributed systems
 Services and interfaces in computing systems
 Client/server architecture

 What is a middleware ?

 Conclusion



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 45

What is a middleware

physical communication link

operating
system

machinemachine

operating
system

communication
system

middleware middleware

applicationapplication

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 46

Functions of a middleware

 A middleware has mainly four functions :

1) Make distribution as invisible (transparent) as possible

2) Provide a homogeneous view of underlying heterogeneous hardware 
and software systems

3) Provide services of common use for distributed systems

4) Provide a high-level interface or API (Applications Programming 
Interface) for programming distributed applications

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 47

Middleware for distributed systems

 Middleware aims at simplifying programming distributed 
systems

 Implementation, evolution and reuse of applications code

 Inter-platform portability of applications

 Interoperability between heterogeneous applications

F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 48

Middleware layers

 OS

 JVM

 RMI

 Servlet / JSP

 Sun J2EE / EJB



F. Gaud / O. Gruber / S. Bouchenak Distributed systems & Middleware 49

Incoming lectures and practical work 
on middleware

 Lectures

 Introduction to distributed systems and middleware
 RMI -based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services 


