
IBD – Intergiciels et
Bases de Données

Servlet-based distributed systems

Fabien Gaud, fabien.gaud@inria.fr

http://www-ufrima.imag.fr/ Placard électronique M1 Info IBD

F. Gaud / S. Bouchenak Distributed systems & Middleware 2

Overview of lectures and practical
work

 Lectures

 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work

 Programming distributed systems with RMI
 Project on multi-tier Internet services

F. Gaud / S. Bouchenak Distributed systems & Middleware 3

Introduction – Web applications

 Communication between client and server

 In a web application, client and server communicate via the HTTP
protocol (HyperText Transfer Protocol)

 Web requests

 Client wants to access a remote “resource” available on the server
 A resource in the WWW is identified and located using a URL
 A resource can be:

 a file or a directory
 a reference to a more complicated object, e.g. a query to a database, a

query to a search engine, a program to run

F. Gaud / S. Bouchenak Distributed systems & Middleware 4

What are Servlets

 Servlets are Java programs which run in a server

 Need a JVM and a servlet container

 They can be remotely requested (e.g. by web clients)

 Servlets that run on a web server build web pages on the fly,
and return them to clients

 Building web pages on the fly is useful for a number of reasons:

 The Web page is based on data submitted by the user
 The data changes frequently
 The Web page uses information from corporate databases or other

such sources

F. Gaud / S. Bouchenak Distributed systems & Middleware 5

Advantages of Servlets

 Efficiency

 One process, the JVM
 One thread per request (with traditional CGI, one process per request)
 Can use pool of threads
 Memory efficiency since servlet code is only loaded one time

 Portability

 Servlets are written in Java and follow a well-standardized API.
 Servlets can run virtually unchanged on any Servlet server (e.g.

Apache Tomcat, IBM’s WebSphere Application Server, etc.)

 Features

 User session tracking
 Database connection pools
 etc.

F. Gaud / S. Bouchenak Distributed systems & Middleware 6

Outline

 Introduction

 HTTP basics

 Servlet basics

 Miscellaneous

F. Gaud / S. Bouchenak Distributed systems & Middleware 7

HTTP basics

 HTTP: HyperText Transfer Protocol

 A communication protocol
 Used to transfer hypertext data on the World Wide Web (WWW)

 A protocol (in the general sense)

 Guidelines and rules governing interactions between two parties
 Examples:

 Computing: a set of rules governing communication between computing
endpoints

F. Gaud / S. Bouchenak Distributed systems & Middleware 8

HTTP basics (2)

 HTTP protocol specifies

 Requests
 Responses
 Headers

 Requests invoke a particular method within the set of HTTP
methods

 HTTP GET method
 HTTP POST method
 Other HTTP methods

F. Gaud / S. Bouchenak Distributed systems & Middleware 9

HTTP requests

 HTTP: a simple stateless communication protocol

 An HTTP client (e.g. a web browser) makes a request to an HTTP
server

 The HTTP server (e.g. a web server) responds
 And the transaction is done

 Possibilities to maintain a client session

 Request

 Client request has the following form:
 a method,
 target resource address (a URL),
 HTTP protocol version

F. Gaud / S. Bouchenak Distributed systems & Middleware 10

HTTP request headers

 When sending the request, the client can send optional header
information

 What software the client is running
 What content types the client understands

 The request ends with an empty line

 This information does not directly pertains to what was
requested, but it could be used by the server to generate its
response

F. Gaud / S. Bouchenak Distributed systems & Middleware 11

HTTP Request Example

 GET / HTTP/1.1\r\n
 Host: www.google.fr\r\n
 User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.8) Gecko/20100214 Ubuntu/9.10 (karmic)
Firefox/3.5.8\r\n
 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n
 Accept-Language: fr-fr,fr;q=0.8,en-us;q=0.5,en;q=0.3\r\n
 Accept-Encoding: gzip,deflate\r\n
 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n
 Keep-Alive: 300\r\n
 Connection: keep-alive\r\n
 [truncated] Cookie:
PREF=ID=e7aabd20dfdb8322:U=56759c536b80012d:FF=4:LD=fr:NR=10:TM=1263406128:LM=12650501
00:S=GGkjwPGnyIWu-wNk;
NID=32=f1DjnOUkft7DZSlODhJeaH84tgcB1lpSwv6Ogo3k5U23DXCYTuHvUyhVkF2HbA0i3vtKwUklyGhd-
BdTm-7ORYbHPZEWEdxOo4dnlgt
 \r\n

F. Gaud / S. Bouchenak Distributed systems & Middleware 12

HTTP responses

 After the server processes the request, it sends an HTTP
response

 The first line of the response specifies the following:

 server’s HTTP protocol version
 a status code (e.g. 200 for successful, 404 for “Not Found”)
 a description of the status code

F. Gaud / S. Bouchenak Distributed systems & Middleware 13

HTTP response headers

 After sending the status line, the server sends header
information

 The header tells the client extra information about the response
such as:

 What software the server is running
 MIME type
 Last modification
 ...

 The server sends a blank line after the header

 If the request was successful, the requested data is sent as
part of the response

F. Gaud / S. Bouchenak Distributed systems & Middleware 14

HTTP Response example

 HTTP/1.1 200 OK\r\n
 Date: Sun, 28 Feb 2010 11:08:41 GMT\r\n
 Expires: -1\r\n
 Cache-Control: private, max-age=0\r\n
 Content-Type: text/html; charset=UTF-8\r\n
 Content-Encoding: gzip\r\n
 Server: gws\r\n
 Content-Length: 4721\r\n
 \r\n
 […]

F. Gaud / S. Bouchenak Distributed systems & Middleware 15

HTTP GET method

 GET method is designed for getting a resource

 Examples:
 an HTML/image file,
 a chart
 the result of a database query

 GET method can have parameters that better describe what to
get

 Example: an x, y scale for a dynamically created chart
 Parameters are passed as a sequence of characters appended to the

request URL (i.e. a query string)

http://www.google.com/search?hl=fr&q=java+servlet&

F. Gaud / S. Bouchenak Distributed systems & Middleware 16

HTTP POST method

 POST method is designed for posting information

 Examples:
 a credit card number
 some new chart data
 information to be stored in a database

 POST method passes all its data as part of the HTTP request
body

 It may need to send megabytes of information

 POST requests should not be bookmarked or emailed (or
reloaded)

F. Gaud / S. Bouchenak Distributed systems & Middleware 17

Other HTTP methods

 HEAD method

 Sent by a client when it wants to see only the headers of the response

 PUT method

 Place documents directly on the server

 DELETE method

 Delete documents from the server

 TRACE method

 Return to the client the exact contents of its request (used for
debugging)

 OPTIONS method

 Ask the server which methods its supports
F. Gaud / S. Bouchenak Distributed systems & Middleware 18

Example of HTTP protocol

[TCP CONNECTION]

Client → Server GET / HTTP/1.1

Server → Client HTTP/1.1 200 OK (text/html) […]

Client → Server GET /intl/fr_fr/images/logo.gif HTTP/1.1

Server → Client HTTP/1.1 200 OK (GIF89a) […]

Client → Server GET /extern_js/xxx.js HTTP/1.1

Server → Client HTTP/1.1 200 OK (text/javascript) […]

[TCP FIN]

F. Gaud / S. Bouchenak Distributed systems & Middleware 19

Outline

 Introduction

 HTTP basics

 Servlet basics

 Generic servlets and HTTP servlets
 Servlet lifcycle
 Servlet API
 A simple example
 Getting information from requests
 An HTML form example

 Miscellaneous

F. Gaud / S. Bouchenak Distributed systems & Middleware 20

A generic servlet handling a request

service ()

Servlet Server

Servlet Interface

GenericServlet abstract class

request
response

Implemented by subclass

“service” method is the GenericServlet’s entry point

F. Gaud / S. Bouchenak Distributed systems & Middleware 21

An HTTP servlet handling GET and
POST requests

service ()

HTTP (i.e. web) and Servlet server

Servlet Interface

HttpServlet subclass

GET request
response

POST request

response

Implemented by subclass

doGet ()

doPost ()

“doGet” method is the HttpServlet’s entry point for GET requests

“doPost” method is the HttpServlet’s entry point for POST requests

F. Gaud / S. Bouchenak Distributed systems & Middleware 22

Web Container

Servlet

Servlet lifecycle

Web Container

Web Container

Servlet

Servlet

Web Container

Servlet

Servlet

1. Loading class

2. Initialization

init() method

3. Processing requests

service() method

4. Unloading

destroy() method
©D. Donsez

F. Gaud / S. Bouchenak Distributed systems & Middleware 23

Servlet lifecycle (2)

 A Servlet is an instance of a class which implements the
javax.servlet.Servlet interface

 A Servlet server initializes a Servlet by

 loading the Servlet class
 creating an instance of the Servlet by calling the no-args constructor
 calling the Servlet's init(ServletConfig config) method

 Servlet’s init(ServletConfig config) method

 Performs any necessary initialization of the Servlet and stores the
ServletConfig object

 The ServletConfig object contains Servlet parameters and a reference
to the Servlet's ServletContext

 Is guaranteed to be called only once during the Servlet's lifecycle

F. Gaud / S. Bouchenak Distributed systems & Middleware 24

Servlet lifecycle (3)

 Servlet’s service method

 When the Servlet is initialized, its service(ServletRequest req,
ServletResponse res) method is called for every request to the Servlet

 The method is called concurrently (i.e. multiple threads may call this
method at the same time)

 It should be implemented in a thread-safe manner

 Servlet’s destroy method

 Sometimes, a Servlet may need to be unloaded (e.g. because a new
version should be loaded or the server is shutting down)

 When the Servlet needs to be unloaded, the destroy() method is called
 There may still be threads that execute the service method when

destroy is called, so destroy has to be thread-safe
 This method is guaranteed to be called only once during the Servlet's

lifecycle

F. Gaud / S. Bouchenak Distributed systems & Middleware 25

Servlet API

 Package javax.servlet

 Contains classes to support generic, protocol-independent servlets
 Some elements of the package:

 Servlet interface:
 defines methods that all servlets must implement

 GenericServlet abstract class:
 defines a generic, protocol-independent servlet

 ServletRequest interface:
 defines an object to provide client request information to a servlet

 ServletResponse interface:
 defines an object to assist a servlet in sending a response to the client

 ServletConfig interface:
 Information used by a servlet container to pass to a servlet during initialization

 ServletContext interface:
 defines a set of methods that a servlet uses to communicate with its servlet

container (e.g. write to a log file, bind an object to a given attribute, ...)
F. Gaud / S. Bouchenak Distributed systems & Middleware 26

Servlet API (2)

 Package javax.servlet.http

 Contains classes to support HTTP-based servlets
 Some elements of the package:

 HttpServlet abstract class:
 subclass of GenericServlet, provides an abstract class to be subclassed to create

an HTTP servlet suitable for a Web site

 HttpServletRequest interface:
 extends the ServletRequest interface to provide request information for HTTP

servlets

 HttpServletResponse interface:
 extends the ServletResponse interface to provide HTTP-specific functionality in

sending a response

F. Gaud / S. Bouchenak Distributed systems & Middleware 27

A simple HTTP Servlet

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType(“text/html”);
PrintWriter out = res.getWriter();
out.println(“<HTML>”);
out.println(“<HEAD> <TITLE> Hello World </TITLE> </HEAD>”);
out.println(“<BODY> <P> Hello World </P> </BODY>”);

 out.println(“</HTML>”);
out.close();

}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 28

Getting information from requests
 A request contains data passed between a client and the

servlet

 All requests implement the ServletRequest interface

 This interface defines methods for accessing information such
as:

 String getParameter(String name):
 returns the value of a request parameter as a String

 String getProtocol():
 returns the name and version of the protocol the request uses

 String getRemoteAddr():
 returns the Internet Protocol (IP) address of the client that sent the

request
 http://java.sun.com/webservices/docs/1.5/api/javax/servlet/http/HttpServletRequest.html

F. Gaud / S. Bouchenak Distributed systems & Middleware 29

Getting information from requests (2)

public class BookInfoServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

...
String bookId = req.getParameter("bookId");
if (bookId != null) {

// Retrieve information about that book
...

}
...

}
...

}

 Example:

 A customer wishes to get information about a book.
 He calls BookInfoServlet and includes the identifier of the book in his

request
 For example: http://host:port/servlets/BookInfoServlet?bookId=1234

F. Gaud / S. Bouchenak Distributed systems & Middleware 30

Basic HTTP Servlet structure

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HTML form data
// (e.g. data the user entered and submitted)
...

// Perform any internal processing for generating dynamic results
...

// Use "response" to specify the HTTP response line and headers
// (e.g. specifying the content type).
PrintWriter out = res.getWriter();
// Use "out" to send content to browser
...

}
...

F. Gaud / S. Bouchenak Distributed systems & Middleware 31

Basic HTTP Servlet structure (2)

...

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

doGet(req, res);

}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 32

Outline

 Introduction

 HTTP basics

 Servlet basics

 Miscellaneous

 User authentication
 User session based on username
 User session based on cookies
 User session based on HttpSession

 Notes about deployment

F. Gaud / S. Bouchenak Distributed systems & Middleware 33

User authentication

 Objective

 Restrict access to some of resources of the web application

 Example

 A magazine is published online
 Only paid subscribers can read the articles

 Principles

 An HTTP server has a built-in capability to restrict access to some or
all of its resources to a given set of registered users.

 How to set up restricted access depends on the server, but here are
the underlying principles

 The first time a web client (e.g. Browser) attempts to access one of
these resources, the HTTP server replies that it needs special user
authentication

F. Gaud / S. Bouchenak Distributed systems & Middleware 34

User authentication (2)

 Principles (cont.)

 When the browser receives this response, it usually asks the user for
a name and password

 Once the user enters his information, the browser again attempts to
access the resource, this time attaching the user's name and
password along with the request

 If the server accepts the name/password pair, it happily handles the
request.

 If, on the other hand, the server doesn't accept the name/password
pair, the browser is denied

F. Gaud / S. Bouchenak Distributed systems & Middleware 35

Servlets and user authentication

 When access to a servlet has been restricted by the server, the
servlet can get the name of the user that was accepted by the
server

 Uses the getRemoteUser() method
 This information is retrieved from the servlet's HttpServletRequest

object
 public String HttpServletRequest.getRemoteUser()

 This method returns the name of the user making the request
as a String, or null if th user login is not known

 At this time, the user authentication has already been done by the
server

F. Gaud / S. Bouchenak Distributed systems & Middleware 36

User session based on username

 Username can be used to track a client session

 Once a user has logged in, the browser remembers his
username

 A servlet can identify the user through his username and
thereby track her session

 Example

 if the user adds an item to her virtual shopping cart, that fact can be
remembered (e.g. in a shared class or external database)

 This can be used later by another servlet when the user goes to the
check-out page

F. Gaud / S. Bouchenak Distributed systems & Middleware 37

User session based on username (2)

 Example:

 A servlet utilizes user authorization to add items to a user's shopping
cart

String name = req.getRemoteUser();
if (name == null) {

// Explain that the server administrator should
// protect this resource

} else {
String[] items = req.getParameterValues("item");
if (items != null) {

for (int i = 0; i < items.length; i++) {
addItemToCart(name, items[i]);

}
}

}

F. Gaud / S. Bouchenak Distributed systems & Middleware 38

User session based on cookies

 Servlet API provides the javax.servlet.http.Cookie class for
working with cookies

 A cookie is created with the Cookie() constructor

 public Cookie(String name, String value)
 Value can be changed later

 A servlet can send a cookie to the client by passing a Cookie
object to the addCookie() method of HttpServletResponse

 public void HttpServletResponse.addCookie(Cookie cookie)

 Because cookies are sent using HTTP headers, they should be
added to the response before you send any content.

 Number and size of cookie are restricted

F. Gaud / S. Bouchenak Distributed systems & Middleware 39

User session based on cookies (2)

 A servlet sets a cookie like this:
Cookie cookie = new Cookie("ID", "123");

res.addCookie(cookie);

 A servlet retrieves cookies by calling the getCookies() method
of HttpServletRequest:

public Cookie[] HttpServletRequest.getCookies()

 A servlet fetches cookies looks like this:
Cookie[] cookies = req.getCookies();

if (cookies != null) {

for (int i = 0; i < cookies.length; i++) {

String name = cookies[i].getName();

String value = cookies[i].getValue();

}

}
F. Gaud / S. Bouchenak Distributed systems & Middleware 40

User session based on HttpSession

 The easiest way to maintain data associated with a client
 Usually maintained using cookies and associated with a

timeout
 Get the current HttpSession

HttpSession session = request.getSession();

 Set attributes to a session

session.setAttribute(“name”,(MyObject) value);

 Get attributes from a session

MyObject value = (MyObject)session.getAttribute("name");

 Invalidate a session

session.invalidate();

F. Gaud / S. Bouchenak Distributed systems & Middleware 41

Outline

 Introduction

 HTTP basics

 Servlet basics

 Miscellaneous

 User authentication
 User session based on username
 User session based on cookies
 User session based on HttpSession

 Notes about deployment

F. Gaud / S. Bouchenak Distributed systems & Middleware 42

Tomcat

 Widely used servlet container developed by the Apache
Foundation

 Important directories

 /bin : startup and shutdown scripts
 /conf : configuration files especially server.xml and tomcat-users.xml
 /lib : contains needed libraries (for example jdbc drivers)
 /logs : server log files
 /webapps : place here your web apps

 Important environment variables

 $CATALINA_HOME must be set to the root of Tomcat installation

F. Gaud / S. Bouchenak Distributed systems & Middleware 43

Standard directory layout

 See http://tomcat.apache.org/tomcat-6.0-doc/appdev/deployment.html

 Place at the root all needed resources (images, html pages, …)

 /WEB-INF/lib/ : libraries needed by your web application

 /WEB-INF/classes/ : Contains java classes (both servlet and
non-servlet)

 /WEB-INF/web.xml : allow to specify servlet ↔ url mapping as
well as initialization parameters

F. Gaud / S. Bouchenak Distributed systems & Middleware 44

Packaging

 Goal: distributing of web applications

 Package must contains all application needs

 Libraries, resources, ...

 All contained in a .war

 A jar with the organization described before

 Example: Use with Tomcat

 Put war in webapps/
 Start (or restart) the server

F. Gaud / S. Bouchenak Distributed systems & Middleware 45

Incoming lectures and practical work
on middleware

 Lectures
 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work
 Programming distributed systems with RMI
 Project on multi-tier Internet services

F. Gaud / S. Bouchenak Distributed systems & Middleware 46

References

This lecture is extensively based on:

 S. Bodoff. Java Servlet Technology.
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html

 M. Boger. Java in Distributed Systems: Concurrency, Distribution and
Persistence. Wiley, 2001.

 M. Hall. Servlets and Java ServerPages: A Tutorial.
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/

 J. Hunter, W. Crawford. Java Servlet Programming. O’Reilly, 1998.

 S. Zeiger. Servlet Essentials.
http://www.novocode.com/doc/servlet-essentials/

