IBD — Intergiciels et
Bases de Données

Servlet-based distributed systems

Fabien Gaud, fabien.gaud@inria.fr

http://www-ufrima.imag.fr/ = Placard électronique = M1 Info = IBD

Overview of lectures and practical
work

® | ectures

® Introduction to distributed systems and middleware
® RMI-based distributed systems

* Servlet-based distributed systems

® Introduction to multi-tier distributed Internet services

® Practical work

® Programming distributed systems with RMI
* Project on multi-tier Internet services

F. Gaud / S. Bouchenak Distributed systems & Middleware 2

Introduction — Web applications

e Communication between client and server

® In a web application, client and server communicate via the HTTP
protocol (HyperText Transfer Protocol)

® \Web requests

* Client wants to access a remote “resource” available on the server
® Aresource in the WWW is identified and located using a URL
® Aresource can be:

a file or a directory

a reference to a more complicated object, e.g. a query to a database, a
query to a search engine, a program to run

F. Gaud / S. Bouchenak Distributed systems & Middleware 3

What are Servlets

® Servlets are Java programs which run in a server

* Need a JVM and a servlet container

® They can be remotely requested (e.g. by web clients)

® Servlets that run on a web server build web pages on the fly,
and return them to clients

e Building web pages on the fly is useful for a number of reasons:

®* The Web page is based on data submitted by the user
® The data changes frequently

* The Web page uses information from corporate databases or other
such sources

F. Gaud/ S. Bouchenak Distributed systems & Middleware 4

Advantages of Servlets

e Efficiency
* One process, the JVM
One thread per request (with traditional CGl, one process per request)
Can use pool of threads
Memory efficiency since servlet code is only loaded one time

e Portability

e Servlets are written in Java and follow a well-standardized API.

e Servlets can run virtually unchanged on any Servlet server (e.g.
Apache Tomcat, IBM's WebSphere Application Server, etc.)

® Features

® User session tracking
¢ Database connection pools

° etc.

F. Gaud / S. Bouchenak Distributed systems & Middleware 5

Outline

® |ntroduction
e HTTP basics
® Servlet basics

® Miscellaneous

F. Gaud / S. Bouchenak Distributed systems & Middleware

HTTP basics

e HTTP: HyperText Transfer Protocol

® A communication protocol
® Used to transfer hypertext data on the World Wide Web (WWW)

® A protocol (in the general sense)

® Guidelines and rules governing interactions between two parties
* Examples:

Computing: a set of rules governing communication between computing
endpoints

F. Gaud / S. Bouchenak Distributed systems & Middleware 7

HTTP basics (2)

e HTTP protocol specifies

® Requests
® Responses
®* Headers

® Requests invoke a particular method within the set of HTTP
methods
® HTTP GET method
e HTTP POST method
® Other HTTP methods

F. Gaud/ S. Bouchenak Distributed systems & Middleware

HTTP requests

e HTTP: a simple stateless communication protocol

® An HTTP client (e.g. a web browser) makes a request to an HTTP
server
® The HTTP server (e.g. a web server) responds

® And the transaction is done

® Possibilities to maintain a client session

® Request

® Client request has the following form:
a method,
target resource address (a URL),
HTTP protocol version

F. Gaud / S. Bouchenak Distributed systems & Middleware 9

HTTP request headers

® When sending the request, the client can send optional header
information

® What software the client is running
* What content types the client understands

® The request ends with an empty line

® This information does not directly pertains to what was
requested, but it could be used by the server to generate its
response

F. Gaud / S. Bouchenak Distributed systems & Middleware 10

HTTP Request Example

GET /HTTP/1.1\\n

Host: www.google.fr\r\n

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.1.8) Gecko/20100214 Ubuntu/9.10 (karmic)
Firefox/3.5.8\r\n

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n

Accept-Language: fr-fr,fr;q=0.8,en-us;q=0.5,en;q=0.3\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;g=0.7\r\n

Keep-Alive: 300\r\n

Connection: keep-alive\r\n

[truncated] Cookie:
PREF=ID=e7aabd20dfdb8322:U=56759c536b80012d:FF=4:LD=fr:NR=10:TM=1263406128:LM=12650501
00:S=GGkjwPGnylWu-wNk;
NID=32=f1DjnOUkft7DZSIODhJeaH84tgcB1IpSwv60g0o3k5U23DXCY TuHvUyhVkF2HbAOi3vtKwUklyGhd-
BdTm-7ORYbHPZEWEdxOo4dnlgt

\r\n

F. Gaud / S. Bouchenak Distributed systems & Middleware 11

HTTP responses

e After the server processes the request, it sends an HTTP

response

® The first line of the response specifies the following:

® server's HTTP protocol version
® a status code (e.g. 200 for successful, 404 for “Not Found”)
® a description of the status code

F. Gaud/ S. Bouchenak Distributed systems & Middleware 12

HTTP response headers

e After sending the status line, the server sends header
information

® The header tells the client extra information about the response
such as:

® What software the server is running
* MIME type
¢ Last modification

® The server sends a blank line after the header

® |f the request was successful, the requested data is sent as
part of the response

F. Gaud / S. Bouchenak Distributed systems & Middleware 13

HTTP Response example

HTTP/1.1 200 OK\r\n

Date: Sun, 28 Feb 2010 11:08:41 GMT\r\n
Expires: -1\r\n

Cache-Control: private, max-age=0\r\n
Content-Type: text/html; charset=UTF-8\r\n
Content-Encoding: gzip\r\n

Server: gws\r\n

Content-Length: 4721\r\n

\r\n

[...]

F. Gaud / S. Bouchenak Distributed systems & Middleware 14

HTTP GET method

e GET method is designed for getting a resource
* Examples:
an HTML/image file,
a chart
the result of a database query

e GET method can have parameters that better describe what to
get
° Example: an x, y scale for a dynamically created chart

® Parameters are passed as a sequence of characters appended to the
request URL (i.e. a query string)

http://www.google.com/search?hl=fr&q=java+serviet&

F. Gaud / S. Bouchenak Distributed systems & Middleware 15

HTTP POST method

® POST method is designed for posting information

° Examples:
a credit card number
some new chart data
information to be stored in a database

® POST method passes all its data as part of the HTTP request
body

® It may need to send megabytes of information

e POST requests should not be bookmarked or emailed (or
reloaded)

F. Gaud/ S. Bouchenak Distributed systems & Middleware 16

Other HTTP methods

e HEAD method

® Sent by a client when it wants to see only the headers of the response

e PUT method

® Place documents directly on the server

® DELETE method

* Delete documents from the server

® TRACE method
* Return to the client the exact contents of its request (used for
debugging)
® OPTIONS method

® Ask the server which methods its supports

F. Gaud / S. Bouchenak Distributed systems & Middleware 17

Example of HTTP protocol

[TCP CONNECTION]

Client — Server GET/HTTP/11

Server — Client HTTP/1.1 200 OK (text/html) [...]
Client — Server GET /intl/fr_fr/images/logo.gif HTTP/1.1
Server — Client HTTP/1.1 200 OK (GIF89a)[...]
Client — Server GET /extern_js/xxx.js HTTP/1.1

Server — Client HTTP/1.1 200 OK (text/javascript) [...]
[TCPFIN]

F. Gaud / S. Bouchenak Distributed systems & Middleware

Outline

® |ntroduction
e HTTP basics

® Servlet basics

® Generic servlets and HTTP servlets
® Servlet lifcycle

® Servlet API

® A simple example

® Getting information from requests

® An HTML form example

® Miscellaneous

F. Gaud / S. Bouchenak Distributed systems & Middleware 19

A generic servlet handling a request ‘

Serviet Interface

Servlet Server GenericServlet abstract class

request service ()
response

“service” method is the GenericServlet’s entry point

Ij Implemented by subclass

F. Gaud/ S. Bouchenak Distributed systems & Middleware

20

doPost ()

An HTTP servlet handling GET and ’ T
POST requests :
Servlet Interface
HTTP (i.e. web) and Servlet server HttpServiet subclass
GET request — 1 doGet () I
response |)
POST request service () ~
response *——| T w0 |

“doGet” method is the HttpServlet’s entry point for GET requests
“doPost” method is the HttpServlet’s entry point for POST requests

Implemented by subclass

F. Gaud / S. Bouchenak Distributed systems & Middleware 21

eees
- L X LR
Servlet lifecycle a2
. Web Container
1. Loading class
2. Initialization Web Container
init() method
. Web Container
3. Processing requests @
service() method \/
Web Container
4. Unloading
destroy() method
©D. Donsez
F. Gaud / S. Bouchenak Distributed systems & Middleware 22

Servlet lifecycle (2) ’

® A Servlet is an instance of a class which implements the
javax.servlet.Servlet interface

® A Servlet server initializes a Servlet by

® loading the Servlet class
® creating an instance of the Servlet by calling the no-args constructor
¢ calling the Servlet's init(ServletConfig config) method

® Servlet's init(ServletConfig config) method
® Performs any necessary initialization of the Servlet and stores the
ServletConfig object

® The ServletConfig object contains Servlet parameters and a reference
to the Servlet's ServletContext

® |s guaranteed to be called only once during the Servlet's lifecycle

F. Gaud / S. Bouchenak Distributed systems & Middleware 23

Servlet lifecycle (3) ‘

® Servlet's service method
® When the Servlet is initialized, its service(ServletRequest req,
ServletResponse res) method is called for every request to the Servlet

® The method is called concurrently (i.e. multiple threads may call this
method at the same time)

® It should be implemented in a thread-safe manner

® Servlet's destroy method
* Sometimes, a Servlet may need to be unloaded (e.g. because a new
version should be loaded or the server is shutting down)
® When the Servlet needs to be unloaded, the destroy() method is called

® There may still be threads that execute the service method when
destroy is called, so destroy has to be thread-safe

® This method is guaranteed to be called only once during the Servlet's
lifecycle

F. Gaud/ S. Bouchenak Distributed systems & Middleware 24

Serviet API

® Package javax.servlet

* Contains classes to support generic, protocol-independent servlets
® Some elements of the package:
Servlet interface:
defines methods that all servlets must implement
GenericServlet abstract class:
defines a generic, protocol-independent servlet
ServletRequest interface:
defines an object to provide client request information to a servlet
ServletResponse interface:
defines an object to assist a servlet in sending a response to the client
ServletConfig interface:
Information used by a servlet container to pass to a servlet during initialization
ServletContext interface:

defines a set of methods that a servlet uses to communicate with its serviet
container (e.g. write to a log file, bind an object to a given attribute, ...)
F. Gaud / S. Bouchenak Distributed systems & Middleware 25

Servlet API (2)

® Package javax.servlet.http

® Contains classes to support HTTP-based servlets
* Some elements of the package:

HttpServlet abstract class:

= subclass of GenericServlet, provides an abstract class to be subclassed to create
an HTTP servlet suitable for a Web site

HttpServletRequest interface:

= extends the ServletRequest interface to provide request information for HTTP
servlets

HttpServletResponse interface:

* extends the ServletResponse interface to provide HTTP-specific functionality in
sending a response

F. Gaud / S. Bouchenak Distributed systems & Middleware 26

A simple HTTP Servlet

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType (“text/html”);

PrintWriter out = res.getWriter();

out.println (“<HTML>") ;

out.println (“<HEAD> <TITLE> Hello World </TITLE> </HEAD>");
out.println (“<BODY> <P> Hello World </P> </BODY>");
out.println (“</HTML>") ;

out.close();

F. Gaud / S. Bouchenak Distributed systems & Middleware 27

Getting information from requests

® A request contains data passed between a client and the
serviet

® All requests implement the ServietRequest interface

® This interface defines methods for accessing information such
as:

® String getParameter(String name):

returns the value of a request parameter as a String
e String getProtocol():

returns the name and version of the protocol the request uses
* String getRemoteAddr():

returns the Internet Protocol (IP) address of the client that sent the
request

* http://java.sun.com/webservices/docs/1.5/api/javax/servlet/http/HttpServietRequest.html

F. Gaud/ S. Bouchenak Distributed systems & Middleware 28

Getting information from requests (2)

® Example:

* A customer wishes to get information about a book.

® He calls BookInfoServlet and includes the identifier of the book in his
request

® For example: http://host:port/serviets/BookinfoServiet?bookld=1234

Basic HTTP Servlet structure

public class BookInfoServlet extends HttpServlet ({
public void doGet (HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {

String bookId = req.getParameter ("bookId");
if (bookId != null)
// Retrieve information about that book

}

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyServlet extends HttpServlet {
public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Use "request" to read incoming HTTP headers and HTML form data
// (e.g. data the user entered and submitted)

// Perform any internal processing for generating dynamic results

// Use "response" to specify the HTTP response line and headers
// (e.g. specifying the content type).

PrintWriter out = res.getWriter();

// Use "out" to send content to browser

F. Gaud / S. Bouchenak Distributed systems & Middleware 29

F. Gaud / S. Bouchenak Distributed systems & Middleware

30

Basic HTTP Servlet structure (2)

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException ({

doGet (req, res);

F. Gaud/ S. Bouchenak Distributed systems & Middleware 31

Outline

® Introduction

® HTTP basics
® Servlet basics

® Miscellaneous

® User authentication
User session based on username
User session based on cookies
User session based on HttpSession
* Notes about deployment

F. Gaud/ S. Bouchenak Distributed systems & Middleware

32

User authentication

® Objective

® Restrict access to some of resources of the web application

® Example

® A magazine is published online
® Only paid subscribers can read the articles

® Principles

® An HTTP server has a built-in capability to restrict access to some or
all of its resources to a given set of registered users.

® How to set up restricted access depends on the server, but here are
the underlying principles

® The first time a web client (e.g. Browser) attempts to access one of
these resources, the HTTP server replies that it needs special user

authentication
F. Gaud / S. Bouchenak Distributed systems & Middleware 33

User authentication (2)

® Principles (cont.)

* When the browser receives this response, it usually asks the user for
a name and password

® Once the user enters his information, the browser again attempts to
access the resource, this time attaching the user's name and
password along with the request

* If the server accepts the name/password pair, it happily handles the
request.

* If, on the other hand, the server doesn't accept the name/password
pair, the browser is denied

F. Gaud / S. Bouchenak Distributed systems & Middleware 34

Servlets and user authentication

® When access to a servlet has been restricted by the server, the
servlet can get the name of the user that was accepted by the
server

® Uses the getRemoteUser() method

This information is retrieved from the servlet's HttpServlietRequest
object

public String HttpServletRequest.getRemoteUser()

® This method returns the name of the user making the request
as a String, or null if th user login is not known

* At this time, the user authentication has already been done by the
server

F. Gaud / S. Bouchenak Distributed systems & Middleware 35

User session based on username

® Username can be used to track a client session

® Once a user has logged in, the browser remembers his
username

® A servlet can identify the user through his username and
thereby track her session

® Example

* f the user adds an item to her virtual shopping cart, that fact can be
remembered (e.g. in a shared class or external database)

® This can be used later by another servlet when the user goes to the
check-out page

F. Gaud/ S. Bouchenak Distributed systems & Middleware 36

User session based on username (2)

® Example:

* A servlet utilizes user authorization to add items to a user's shopping
cart

String name = req.getRemoteUser () ;
if (name == null) {
// Explain that the server administrator should
// protect this resource
} else {
String[] items = reqg.getParameterValues ("item");
if (items != null) {
for (int i = 0; i < items.length; i++) {
addItemToCart (name, items[i]);
}
}
}
F. Gaud / S. Bouchenak Distributed systems & Middleware 37

User session based on cookies

e Servlet API provides the javax.servlet.http.Cookie class for
working with cookies

® A cookie is created with the Cookie() constructor
® public Cookie(String name, String value)
Value can be changed later
e A servlet can send a cookie to the client by passing a Cookie
object to the addCookie() method of HttpServietResponse
® public void HitpServletResponse.addCookie(Cookie cookie)

® Because cookies are sent using HTTP headers, they should be
added to the response before you send any content.

e Number and size of cookie are restricted

F. Gaud / S. Bouchenak Distributed systems & Middleware 38

User session based on cookies (2)

® A servlet sets a cookie like this:

Cookie cookie = new Cookie("ID", "123");
res.addCookie(cookie);

® A servlet retrieves cookies by calling the getCookies() method
of HttpServletRequest:

public Cookie[] HttpServietRequest.getCookies()

e A servlet fetches cookies looks like this:

Cookie[] cookies = req.getCookies();
if (cookies != null) {
for (int i = 0; i < cookies.length; i++) {
String name = cookies[i].getName();
String value = cookiesi].getValue();

F. Gaud / S. Bouchenak Distributed systems & Middleware 39

User session based on HttpSession

® The easiest way to maintain data associated with a client

® Usually maintained using cookies and associated with a
timeout

® Get the current HttpSession

HttpSession session = request.getSession();

® Set attributes to a session
session.setAttribute(“name”,(MyObiject) value);

® Get attributes from a session

MyObject value = (MyObject)session.getAttribute("name”);

® |nvalidate a session

session.invalidate();

F. Gaud/ S. Bouchenak Distributed systems & Middleware 40

Tomcat

® Widely used servlet container developed by the Apache

Foundation

® |mportant directories

® /bin : startup and shutdown scripts

® /conf : configuration files especially server.xml and tomcat-users.xml
® /lib : contains needed libraries (for example jdbc drivers)

* Jlogs : server log files

® /webapps : place here your web apps

® |mportant environment variables

e $CATALINA_HOME must be set to the root of Tomcat installation

F. Gaud / S. Bouchenak Distributed systems & Middleware 42

[XX
(X X X
[X LR
- : : []
Outline :
® |ntroduction
e HTTP basics
® Servlet basics
® Miscellaneous
e User authentication
User session based on username
User session based on cookies
User session based on HttpSession
* Notes about deployment
F. Gaud / S. Bouchenak Distributed systems & Middleware 41
[X X J
. eece
Standard directory layout a2

® See http://tomcat.apache.org/tomcat-6.0-doc/appdev/deployment.html
® Place at the root all needed resources (images, html pages, ...)
e /WEB-INF/lib/ : libraries needed by your web application

® /WEB-INF/classes/ : Contains java classes (both servlet and
non-servlet)

® /WEB-INF/web.xml : allow to specify servlet < url mapping as
well as initialization parameters

F. Gaud / S. Bouchenak Distributed systems & Middleware 43

Packaging

Goal: distributing of web applications

® Package must contains all application needs

® Libraries, resources, ...

All contained in a .war

® A jar with the organization described before

Example: Use with Tomcat

® Put war in webapps/
e Start (or restart) the server

F. Gaud/ S. Bouchenak Distributed systems & Middleware 44

Incoming lectures and practical work
on middleware

® Lectures
® Introduction to distributed systems and middleware
® RMIl-based distributed systems
® Servlet-based distributed systems
® Introduction to multi-tier distributed Internet services

® Practical work
® Programming distributed systems with RMI
® Project on multi-tier Internet services

F. Gaud / S. Bouchenak Distributed systems & Middleware 45

References

This lecture is extensively based on:

® S. Bodoff. Java Servlet Technology.
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html

® M. Boger. Java in Distributed Systems: Concurrency, Distribution and
Persistence. Wiley, 2001.

® M. Hall. Serviets and Java ServerPages: A Tutorial.
http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/

® J. Hunter, W. Crawford. Java Serviet Programming. O’Reilly, 1998.
® S. Zeiger. Servlet Essentials.

http://www.novocode.com/doc/servlet-essentials/

F. Gaud / S. Bouchenak Distributed systems & Middleware 46

