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Overview of lectures and practical work

 Lectures

 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed web applications 

 Practical work

 Programming distributed systems with RMI
 Project on multi-tier distributed web applications 
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Motivations

 Processing a request on the server may successively involve 
several types of logic:

 Data access logic
 Example: read data from a persistent storage (e.g. a database)

 Business logic
 Example: use the read data to perform any application-specific 

processing
 Presentation logic

 Example: use the obtained result to build a user-friendly response to 
the client
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Motivations

 These types of logic may be more or less heavy in terms of 
processing time

 A unique server that hosts multiple types of logic may suffer 
from scalability issues in case of heavy workload (#concurrent 
web clients)

 Solution: 

 Separate the different types of logic in different servers
 Multi-tier architecture
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Overview of the multi-tier architecture
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Multi-tier architecture

 Application servers

 Goal: Simplify/Speed up business application development
 Multi-tiers architecture
 Host applications and provide them with services (persistence, 

security, ...)

 Java Enterprise Edition (formerly J2EE)

 Developed by SUN since 1997
 Based on Java
 Many commercial/free implementations which may follow JEE 

specifications
 Bea WebLogic,
 IBM Websphere,
 JBoss,
 Jonas, ...
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Multi-tier architecture (2)

 Web tier

 Receives requests from web clients
 Runs web components
 May forward requests to the business tier
 Returns web documents as responses (e.g. static HTML pages or 

dynamically generated web pages)

 Business tier

 Receives requests from the web tier (may also be called directly)
 Runs business components
 May forward requests to the data access tier (through JDBC)

 Data access tier

 Runs a database server
 Receives requests from the business tier
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Multi-tier architecture (3)
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JEE multi-tier systems

 Web components

 JEE web components are either servlets or JSP pages.

 Some notes about JSP

 Goal : Allows to build web responses in such a way that the static part 
is separated from the dynamic part
 For the static parts of the web response, write regular HTML
 For the dynamic parts of the web response, enclose code for the 

dynamic parts using special tags
 How it works

 A JSP page automatically gets converted to a normal Servlet
 The static HTML is printed to the output stream associated with the servlet's 

service method while the dynamic part correspond to Java code
 Build is performed automatically
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A JSP example
<%! private int counter = 0; %>
<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>
               <BODY>

<H1> Hello
<% counter++;

String pname;
pname = request.getParameter("name");
if (pname== null) { 

out.println("World"); 
} 
else {

%>

Mister <%=pname%>

<% } // fin du else %>
</H1>

</BODY>
</HTML>
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JEE multi-tier systems

 Business components

 Meets the needs of a particular business domain 
 Ex: banking, retail, finance, ...

 There are three kinds of enterprise beans: session beans, entity 
beans, and message-driven beans

 Managed by an EJB container
 Provides non-functional services

 Lifecycle management
 Persistence
 Security
 Transactions
 ...

 EJB may be distributed
 EJB are invoked through different protocols (ex: RMI)
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JEE multi-tier systems

 Business components

 Session bean
 Represents a transient conversation with a client (stateful or stateless)
 When the client finishes executing, the session bean and its data are 

gone
 Front-end to entity beans

 Entity bean 
 Represents persistent data stored in the database.
 Persistence may be managed by the bean or by the container
 Concurrency is managed by the container

 Message-driven bean 
 Combines features of a session bean and a Java Message Service 

(JMS) message listener.
 Allowing a business component to receive JMS messages 

asynchronously.

F. Gaud Distributed systems & Middleware 18

Entity Bean example

@Entity
public class Facture {

@Id
private String numfact;
private Client client;

public Facture() { } 
public Facture(String numfact) { this.numfact = numfact; }

public void setMontant(double montant) { this.montant = montant; }
public double getMontant( ) { return montant; }

@ManyToOne
public Client getClient( ) { return client; }
public void setClient(Client client) { this.client = client; }

}
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Session Bean example

@Stateless
@Remote
public class FacturationBean implements Facturation {

@PersistenceContext
private EntityManager entityManager = null;

public void creerFacture(String numfact, double montant) {
Facture fact = new Facture(numfact);
fact.setMontant(montant);
entityManager.persist(fact);

}

public Facture getFacture(String numfact) {
return entityManager.find(Facture.class, numfact);

}
}
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A setup example
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Load balancing

Source: Jonas Documentation
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Incoming lectures and practical work 
on middleware

 Lectures

 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services 

 Practical work

 Programming distributed systems with RMI
 Project on multi-tier distributed web applications
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