
IBD – Intergiciels et
Bases de Données

Multi-tier distributed web applications

Fabien Gaud, Fabien.Gaud@inrialpes.fr

http://www-ufrima.imag.fr/  Placard électronique  M1 Info  IBD

F. Gaud Distributed systems & Middleware 2

Overview of lectures and practical work

 Lectures

 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed web applications

 Practical work

 Programming distributed systems with RMI
 Project on multi-tier distributed web applications

F. Gaud Distributed systems & Middleware 3

Client – Server

Execution

entity

(process 1)

Computer 1

Execution

 entity

 (process 2)

Computer 2

Communication system

1. request

3. Response

2. procedure

execution

F. Gaud Distributed systems & Middleware 4

Motivations

 Processing a request on the server may successively involve
several types of logic:

 Data access logic
 Example: read data from a persistent storage (e.g. a database)

 Business logic
 Example: use the read data to perform any application-specific

processing
 Presentation logic

 Example: use the obtained result to build a user-friendly response to
the client

F. Gaud Distributed systems & Middleware 5

Example 1

Web client

Computer 1 Computer 2

Communication system

Web server

Presentation

logic

Business

logic

Data access

 logic

F. Gaud Distributed systems & Middleware 6

Example 1

Web client

Computer 1 Computer 2

Communication system

Web server

Presentation

 logic

Business

 logic

Data access

 logic

1. request

3. Response

2. Processing

F. Gaud Distributed systems & Middleware 7

Example 2

Web client

Computer 1 Computer 2

Communication system

Web server

Presentation

 logic

Business

 logic

Data access

 logic

1. request

3. Response

2. Processing

F. Gaud Distributed systems & Middleware 8

Example 3

Web client

Computer 1 Computer 2

Communication system

Web server

Presentation

logic

Business

logic

Data access

logic

1. request

3. Response

2. Processing

F. Gaud Distributed systems & Middleware 9

Motivations

 These types of logic may be more or less heavy in terms of
processing time

 A unique server that hosts multiple types of logic may suffer
from scalability issues in case of heavy workload (#concurrent
web clients)

 Solution:

 Separate the different types of logic in different servers
 Multi-tier architecture

F. Gaud Distributed systems & Middleware 10

Overview of the multi-tier architecture

Web client

Computer 0

Communication system

Web tier

Computer 1

Business tier

Computer 2

Data access

tier

Computer 3

F. Gaud Distributed systems & Middleware 11

Multi-tier architecture

 Application servers

 Goal: Simplify/Speed up business application development
 Multi-tiers architecture
 Host applications and provide them with services (persistence,

security, ...)

 Java Enterprise Edition (formerly J2EE)

 Developed by SUN since 1997
 Based on Java
 Many commercial/free implementations which may follow JEE

specifications
 Bea WebLogic,
 IBM Websphere,
 JBoss,
 Jonas, ...

F. Gaud Distributed systems & Middleware 12

Multi-tier architecture (2)

 Web tier

 Receives requests from web clients
 Runs web components
 May forward requests to the business tier
 Returns web documents as responses (e.g. static HTML pages or

dynamically generated web pages)

 Business tier

 Receives requests from the web tier (may also be called directly)
 Runs business components
 May forward requests to the data access tier (through JDBC)

 Data access tier

 Runs a database server
 Receives requests from the business tier

F. Gaud Distributed systems & Middleware 13

Multi-tier architecture (3)

F. Gaud Distributed systems & Middleware 14

JEE multi-tier systems

 Web components

 JEE web components are either servlets or JSP pages.

 Some notes about JSP

 Goal : Allows to build web responses in such a way that the static part
is separated from the dynamic part
 For the static parts of the web response, write regular HTML
 For the dynamic parts of the web response, enclose code for the

dynamic parts using special tags
 How it works

 A JSP page automatically gets converted to a normal Servlet
 The static HTML is printed to the output stream associated with the servlet's

service method while the dynamic part correspond to Java code
 Build is performed automatically

F. Gaud Distributed systems & Middleware 15

A JSP example
<%! private int counter = 0; %>
<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>
 <BODY>

<H1> Hello
<% counter++;

String pname;
pname = request.getParameter("name");
if (pname== null) {

out.println("World");
}
else {

%>

Mister <%=pname%>

<% } // fin du else %>
</H1>

</BODY>
</HTML>

F. Gaud Distributed systems & Middleware 16

JEE multi-tier systems

 Business components

 Meets the needs of a particular business domain
 Ex: banking, retail, finance, ...

 There are three kinds of enterprise beans: session beans, entity
beans, and message-driven beans

 Managed by an EJB container
 Provides non-functional services

 Lifecycle management
 Persistence
 Security
 Transactions
 ...

 EJB may be distributed
 EJB are invoked through different protocols (ex: RMI)

F. Gaud Distributed systems & Middleware 17

JEE multi-tier systems

 Business components

 Session bean
 Represents a transient conversation with a client (stateful or stateless)
 When the client finishes executing, the session bean and its data are

gone
 Front-end to entity beans

 Entity bean
 Represents persistent data stored in the database.
 Persistence may be managed by the bean or by the container
 Concurrency is managed by the container

 Message-driven bean
 Combines features of a session bean and a Java Message Service

(JMS) message listener.
 Allowing a business component to receive JMS messages

asynchronously.

F. Gaud Distributed systems & Middleware 18

Entity Bean example

@Entity
public class Facture {

@Id
private String numfact;
private Client client;

public Facture() { }
public Facture(String numfact) { this.numfact = numfact; }

public void setMontant(double montant) { this.montant = montant; }
public double getMontant() { return montant; }

@ManyToOne
public Client getClient() { return client; }
public void setClient(Client client) { this.client = client; }

}

F. Gaud Distributed systems & Middleware 19

Session Bean example

@Stateless
@Remote
public class FacturationBean implements Facturation {

@PersistenceContext
private EntityManager entityManager = null;

public void creerFacture(String numfact, double montant) {
Facture fact = new Facture(numfact);
fact.setMontant(montant);
entityManager.persist(fact);

}

public Facture getFacture(String numfact) {
return entityManager.find(Facture.class, numfact);

}
}

F. Gaud Distributed systems & Middleware 20

A setup example

JEE application server

(JOnAS)

HTTP

Servlets

JSP

EJB

client

DBMS

HTML

PHP CGI

RMI / JMS/ …

WebServer

(Apache)

Servlet container

(Tomcat)

Oracle

RMI

JDBC

JDBC

F. Gaud Distributed systems & Middleware 21

Load balancing

Source: Jonas Documentation

F. Gaud Distributed systems & Middleware 22

Incoming lectures and practical work
on middleware

 Lectures

 Introduction to distributed systems and middleware
 RMI-based distributed systems
 Servlet-based distributed systems
 Introduction to multi-tier distributed Internet services

 Practical work

 Programming distributed systems with RMI
 Project on multi-tier distributed web applications

F. Gaud Distributed systems & Middleware 23

References

 This lecture is extensively based on:

 Sun Microsystems. The J2EE Tutorial
http://java.sun.com/j2ee/1.4/docs/tutorial/

 Jonas documentation
http://wiki.jonas.objectweb.org/xwiki/bin/view/Main/WebHome

 Courses given by D. Donsez
http://membres-liglab.imag.fr/donsez/cours/

 Courses given by S.Bouchenak
http://sardes.inrialpes.fr/~bouchena/

 Courses given by R.Lachaize
http://sardes.inrialpes.fr/~rlachaiz

 Courses given by P.Y. Gibello

